Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-3x=0
Consider the first equation. Subtract 3x from both sides.
y-3x=0,-x^{2}+y^{2}=3c^{6}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-3x=0
Solve y-3x=0 for y by isolating y on the left hand side of the equal sign.
y=3x
Subtract -3x from both sides of the equation.
-x^{2}+\left(3x\right)^{2}=3c^{6}
Substitute 3x for y in the other equation, -x^{2}+y^{2}=3c^{6}.
-x^{2}+9x^{2}=3c^{6}
Square 3x.
8x^{2}=3c^{6}
Add -x^{2} to 9x^{2}.
8x^{2}-3c^{6}=0
Subtract 3c^{6} from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\times 8\left(-3c^{6}\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+1\times 3^{2} for a, 1\times 0\times 2\times 3 for b, and -3c^{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 8\left(-3c^{6}\right)}}{2\times 8}
Square 1\times 0\times 2\times 3.
x=\frac{0±\sqrt{-32\left(-3c^{6}\right)}}{2\times 8}
Multiply -4 times -1+1\times 3^{2}.
x=\frac{0±\sqrt{96c^{6}}}{2\times 8}
Multiply -32 times -3c^{6}.
x=\frac{0±4\sqrt{6}\left(|c|\right)^{3}}{2\times 8}
Take the square root of 96c^{6}.
x=\frac{0±4\sqrt{6}\left(|c|\right)^{3}}{16}
Multiply 2 times -1+1\times 3^{2}.
x=\frac{\sqrt{6}\left(|c|\right)^{3}}{4}
Now solve the equation x=\frac{0±4\sqrt{6}\left(|c|\right)^{3}}{16} when ± is plus.
x=-\frac{\sqrt{6}\left(|c|\right)^{3}}{4}
Now solve the equation x=\frac{0±4\sqrt{6}\left(|c|\right)^{3}}{16} when ± is minus.
y=3\times \frac{\sqrt{6}\left(|c|\right)^{3}}{4}
There are two solutions for x: \frac{\sqrt{6}\left(|c|\right)^{3}}{4} and -\frac{\sqrt{6}\left(|c|\right)^{3}}{4}. Substitute \frac{\sqrt{6}\left(|c|\right)^{3}}{4} for x in the equation y=3x to find the corresponding solution for y that satisfies both equations.
y=3\left(-\frac{\sqrt{6}\left(|c|\right)^{3}}{4}\right)
Now substitute -\frac{\sqrt{6}\left(|c|\right)^{3}}{4} for x in the equation y=3x and solve to find the corresponding solution for y that satisfies both equations.
y=3\times \frac{\sqrt{6}\left(|c|\right)^{3}}{4},x=\frac{\sqrt{6}\left(|c|\right)^{3}}{4}\text{ or }y=3\left(-\frac{\sqrt{6}\left(|c|\right)^{3}}{4}\right),x=-\frac{\sqrt{6}\left(|c|\right)^{3}}{4}
The system is now solved.