\left\{ \begin{array} { l } { y = 3 x } \\ { y ^ { 2 } - x ^ { 2 } = 3 c ^ { 6 } } \end{array} \right.
Solve for x, y
x=-\frac{\sqrt{6}c^{3}}{4}\text{, }y=-\frac{3\sqrt{6}c^{3}}{4}
x=\frac{\sqrt{6}c^{3}}{4}\text{, }y=\frac{3\sqrt{6}c^{3}}{4}
Graph
Share
Copied to clipboard
y-3x=0
Consider the first equation. Subtract 3x from both sides.
y-3x=0,-x^{2}+y^{2}=3c^{6}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-3x=0
Solve y-3x=0 for y by isolating y on the left hand side of the equal sign.
y=3x
Subtract -3x from both sides of the equation.
-x^{2}+\left(3x\right)^{2}=3c^{6}
Substitute 3x for y in the other equation, -x^{2}+y^{2}=3c^{6}.
-x^{2}+9x^{2}=3c^{6}
Square 3x.
8x^{2}=3c^{6}
Add -x^{2} to 9x^{2}.
8x^{2}-3c^{6}=0
Subtract 3c^{6} from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\times 8\left(-3c^{6}\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+1\times 3^{2} for a, 1\times 0\times 2\times 3 for b, and -3c^{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 8\left(-3c^{6}\right)}}{2\times 8}
Square 1\times 0\times 2\times 3.
x=\frac{0±\sqrt{-32\left(-3c^{6}\right)}}{2\times 8}
Multiply -4 times -1+1\times 3^{2}.
x=\frac{0±\sqrt{96c^{6}}}{2\times 8}
Multiply -32 times -3c^{6}.
x=\frac{0±4\sqrt{6}\left(|c|\right)^{3}}{2\times 8}
Take the square root of 96c^{6}.
x=\frac{0±4\sqrt{6}\left(|c|\right)^{3}}{16}
Multiply 2 times -1+1\times 3^{2}.
x=\frac{\sqrt{6}\left(|c|\right)^{3}}{4}
Now solve the equation x=\frac{0±4\sqrt{6}\left(|c|\right)^{3}}{16} when ± is plus.
x=-\frac{\sqrt{6}\left(|c|\right)^{3}}{4}
Now solve the equation x=\frac{0±4\sqrt{6}\left(|c|\right)^{3}}{16} when ± is minus.
y=3\times \frac{\sqrt{6}\left(|c|\right)^{3}}{4}
There are two solutions for x: \frac{\sqrt{6}\left(|c|\right)^{3}}{4} and -\frac{\sqrt{6}\left(|c|\right)^{3}}{4}. Substitute \frac{\sqrt{6}\left(|c|\right)^{3}}{4} for x in the equation y=3x to find the corresponding solution for y that satisfies both equations.
y=3\left(-\frac{\sqrt{6}\left(|c|\right)^{3}}{4}\right)
Now substitute -\frac{\sqrt{6}\left(|c|\right)^{3}}{4} for x in the equation y=3x and solve to find the corresponding solution for y that satisfies both equations.
y=3\times \frac{\sqrt{6}\left(|c|\right)^{3}}{4},x=\frac{\sqrt{6}\left(|c|\right)^{3}}{4}\text{ or }y=3\left(-\frac{\sqrt{6}\left(|c|\right)^{3}}{4}\right),x=-\frac{\sqrt{6}\left(|c|\right)^{3}}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}