\left\{ \begin{array} { l } { y = - 0.9 x + 481 } \\ { y = - 0.46 + 588 } \end{array} \right.
Solve for y, x
x = -\frac{5327}{45} = -118\frac{17}{45} \approx -118.377777778
y=587.54
Graph
Share
Copied to clipboard
y=587.54
Consider the second equation. Add -0.46 and 588 to get 587.54.
587.54=-0.9x+481
Consider the first equation. Insert the known values of variables into the equation.
-0.9x+481=587.54
Swap sides so that all variable terms are on the left hand side.
-0.9x=587.54-481
Subtract 481 from both sides.
-0.9x=106.54
Subtract 481 from 587.54 to get 106.54.
x=\frac{106.54}{-0.9}
Divide both sides by -0.9.
x=\frac{10654}{-90}
Expand \frac{106.54}{-0.9} by multiplying both numerator and the denominator by 100.
x=-\frac{5327}{45}
Reduce the fraction \frac{10654}{-90} to lowest terms by extracting and canceling out 2.
y=587.54 x=-\frac{5327}{45}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}