Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=\frac{y_{0}\left(x+2\right)}{6}
Consider the first equation. Express \frac{y_{0}}{6}\left(x+2\right) as a single fraction.
y=\frac{y_{0}x+2y_{0}}{6}
Use the distributive property to multiply y_{0} by x+2.
y-\frac{y_{0}x+2y_{0}}{6}=0
Subtract \frac{y_{0}x+2y_{0}}{6} from both sides.
6y-\left(y_{0}x+2y_{0}\right)=0
Multiply both sides of the equation by 6.
6y-y_{0}x-2y_{0}=0
To find the opposite of y_{0}x+2y_{0}, find the opposite of each term.
6y-y_{0}x=2y_{0}
Add 2y_{0} to both sides. Anything plus zero gives itself.
3x^{2}+4y^{2}=12
Consider the second equation. Add 12 to both sides. Anything plus zero gives itself.
6y+\left(-y_{0}\right)x=2y_{0},3x^{2}+4y^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6y+\left(-y_{0}\right)x=2y_{0}
Solve 6y+\left(-y_{0}\right)x=2y_{0} for y by isolating y on the left hand side of the equal sign.
6y=y_{0}x+2y_{0}
Subtract \left(-y_{0}\right)x from both sides of the equation.
y=\frac{y_{0}}{6}x+\frac{y_{0}}{3}
Divide both sides by 6.
3x^{2}+4\left(\frac{y_{0}}{6}x+\frac{y_{0}}{3}\right)^{2}=12
Substitute \frac{y_{0}}{6}x+\frac{y_{0}}{3} for y in the other equation, 3x^{2}+4y^{2}=12.
3x^{2}+4\left(\left(\frac{y_{0}}{6}\right)^{2}x^{2}+2\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}x+\left(\frac{y_{0}}{3}\right)^{2}\right)=12
Square \frac{y_{0}}{6}x+\frac{y_{0}}{3}.
3x^{2}+4\times \left(\frac{y_{0}}{6}\right)^{2}x^{2}+8\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}x+4\times \left(\frac{y_{0}}{3}\right)^{2}=12
Multiply 4 times \left(\frac{y_{0}}{6}\right)^{2}x^{2}+2\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}x+\left(\frac{y_{0}}{3}\right)^{2}.
\left(4\times \left(\frac{y_{0}}{6}\right)^{2}+3\right)x^{2}+8\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}x+4\times \left(\frac{y_{0}}{3}\right)^{2}=12
Add 3x^{2} to 4\times \left(\frac{y_{0}}{6}\right)^{2}x^{2}.
\left(4\times \left(\frac{y_{0}}{6}\right)^{2}+3\right)x^{2}+8\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}x+4\times \left(\frac{y_{0}}{3}\right)^{2}-12=0
Subtract 12 from both sides of the equation.
x=\frac{-8\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}±\sqrt{\left(8\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}\right)^{2}-4\left(4\times \left(\frac{y_{0}}{6}\right)^{2}+3\right)\left(\frac{4y_{0}^{2}}{9}-12\right)}}{2\left(4\times \left(\frac{y_{0}}{6}\right)^{2}+3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4\times \left(\frac{y_{0}}{6}\right)^{2} for a, 4\times 2\times \frac{y_{0}}{6}\times \frac{y_{0}}{3} for b, and \frac{4y_{0}^{2}}{9}-12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}±\sqrt{\frac{16y_{0}^{4}}{81}-4\left(4\times \left(\frac{y_{0}}{6}\right)^{2}+3\right)\left(\frac{4y_{0}^{2}}{9}-12\right)}}{2\left(4\times \left(\frac{y_{0}}{6}\right)^{2}+3\right)}
Square 4\times 2\times \frac{y_{0}}{6}\times \frac{y_{0}}{3}.
x=\frac{-8\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}±\sqrt{\frac{16y_{0}^{4}}{81}+\left(-\frac{4y_{0}^{2}}{9}-12\right)\left(\frac{4y_{0}^{2}}{9}-12\right)}}{2\left(4\times \left(\frac{y_{0}}{6}\right)^{2}+3\right)}
Multiply -4 times 3+4\times \left(\frac{y_{0}}{6}\right)^{2}.
x=\frac{-8\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}±\sqrt{\frac{16y_{0}^{4}}{81}-\frac{16y_{0}^{4}}{81}+144}}{2\left(4\times \left(\frac{y_{0}}{6}\right)^{2}+3\right)}
Multiply -12-\frac{4y_{0}^{2}}{9} times \frac{4y_{0}^{2}}{9}-12.
x=\frac{-8\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}±\sqrt{144}}{2\left(4\times \left(\frac{y_{0}}{6}\right)^{2}+3\right)}
Add \frac{16y_{0}^{4}}{81} to -\frac{16y_{0}^{4}}{81}+144.
x=\frac{-8\times \frac{y_{0}}{3}\times \frac{y_{0}}{6}±12}{2\left(4\times \left(\frac{y_{0}}{6}\right)^{2}+3\right)}
Take the square root of 144.
x=\frac{-\frac{4y_{0}^{2}}{9}±12}{\frac{2y_{0}^{2}}{9}+6}
Multiply 2 times 3+4\times \left(\frac{y_{0}}{6}\right)^{2}.
x=\frac{-\frac{4y_{0}^{2}}{9}+12}{\frac{2y_{0}^{2}}{9}+6}
Now solve the equation x=\frac{-\frac{4y_{0}^{2}}{9}±12}{\frac{2y_{0}^{2}}{9}+6} when ± is plus. Add -\frac{4y_{0}^{2}}{9} to 12.
x=\frac{2\left(27-y_{0}^{2}\right)}{y_{0}^{2}+27}
Divide -\frac{4y_{0}^{2}}{9}+12 by 6+\frac{2y_{0}^{2}}{9}.
x=\frac{-\frac{4y_{0}^{2}}{9}-12}{\frac{2y_{0}^{2}}{9}+6}
Now solve the equation x=\frac{-\frac{4y_{0}^{2}}{9}±12}{\frac{2y_{0}^{2}}{9}+6} when ± is minus. Subtract 12 from -\frac{4y_{0}^{2}}{9}.
x=-2
Divide -\frac{4y_{0}^{2}}{9}-12 by 6+\frac{2y_{0}^{2}}{9}.
y=\frac{y_{0}}{6}\times \frac{2\left(27-y_{0}^{2}\right)}{y_{0}^{2}+27}+\frac{y_{0}}{3}
There are two solutions for x: \frac{2\left(27-y_{0}^{2}\right)}{27+y_{0}^{2}} and -2. Substitute \frac{2\left(27-y_{0}^{2}\right)}{27+y_{0}^{2}} for x in the equation y=\frac{y_{0}}{6}x+\frac{y_{0}}{3} to find the corresponding solution for y that satisfies both equations.
y=\frac{2\left(27-y_{0}^{2}\right)}{y_{0}^{2}+27}\times \frac{y_{0}}{6}+\frac{y_{0}}{3}
Multiply \frac{y_{0}}{6} times \frac{2\left(27-y_{0}^{2}\right)}{27+y_{0}^{2}}.
y=\frac{y_{0}}{6}\left(-2\right)+\frac{y_{0}}{3}
Now substitute -2 for x in the equation y=\frac{y_{0}}{6}x+\frac{y_{0}}{3} and solve to find the corresponding solution for y that satisfies both equations.
y=-2\times \frac{y_{0}}{6}+\frac{y_{0}}{3}
Multiply \frac{y_{0}}{6} times -2.
y=\frac{y_{0}}{3}-2\times \frac{y_{0}}{6}
Add -2\times \frac{y_{0}}{6} to \frac{y_{0}}{3}.
y=\frac{2\left(27-y_{0}^{2}\right)}{y_{0}^{2}+27}\times \frac{y_{0}}{6}+\frac{y_{0}}{3},x=\frac{2\left(27-y_{0}^{2}\right)}{y_{0}^{2}+27}\text{ or }y=\frac{y_{0}}{3}-2\times \frac{y_{0}}{6},x=-2
The system is now solved.