Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=-0,06x_{2}+0,02x_{3}+2
Solve x_{1}+0,06x_{2}-0,02x_{3}=2 for x_{1}.
0,03\left(-0,06x_{2}+0,02x_{3}+2\right)+x_{2}-0,05x_{3}=3 0,01\left(-0,06x_{2}+0,02x_{3}+2\right)-0,02x_{2}+x_{3}=5
Substitute -0,06x_{2}+0,02x_{3}+2 for x_{1} in the second and third equation.
x_{2}=\frac{247}{4991}x_{3}+\frac{2100}{713} x_{3}=\frac{103}{5001}x_{2}+\frac{8300}{1667}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{103}{5001}\left(\frac{247}{4991}x_{3}+\frac{2100}{713}\right)+\frac{8300}{1667}
Substitute \frac{247}{4991}x_{3}+\frac{2100}{713} for x_{2} in the equation x_{3}=\frac{103}{5001}x_{2}+\frac{8300}{1667}.
x_{3}=\frac{2515800}{498691}
Solve x_{3}=\frac{103}{5001}\left(\frac{247}{4991}x_{3}+\frac{2100}{713}\right)+\frac{8300}{1667} for x_{3}.
x_{2}=\frac{247}{4991}\times \frac{2515800}{498691}+\frac{2100}{713}
Substitute \frac{2515800}{498691} for x_{3} in the equation x_{2}=\frac{247}{4991}x_{3}+\frac{2100}{713}.
x_{2}=\frac{1593300}{498691}
Calculate x_{2} from x_{2}=\frac{247}{4991}\times \frac{2515800}{498691}+\frac{2100}{713}.
x_{1}=-0,06\times \frac{1593300}{498691}+0,02\times \frac{2515800}{498691}+2
Substitute \frac{1593300}{498691} for x_{2} and \frac{2515800}{498691} for x_{3} in the equation x_{1}=-0,06x_{2}+0,02x_{3}+2.
x_{1}=\frac{952100}{498691}
Calculate x_{1} from x_{1}=-0,06\times \frac{1593300}{498691}+0,02\times \frac{2515800}{498691}+2.
x_{1}=\frac{952100}{498691} x_{2}=\frac{1593300}{498691} x_{3}=\frac{2515800}{498691}
The system is now solved.