Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=5000,1.15x-0.9y=9500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=5000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+5000
Add y to both sides of the equation.
1.15\left(y+5000\right)-0.9y=9500
Substitute y+5000 for x in the other equation, 1.15x-0.9y=9500.
1.15y+5750-0.9y=9500
Multiply 1.15 times y+5000.
0.25y+5750=9500
Add \frac{23y}{20} to -\frac{9y}{10}.
0.25y=3750
Subtract 5750 from both sides of the equation.
y=15000
Multiply both sides by 4.
x=15000+5000
Substitute 15000 for y in x=y+5000. Because the resulting equation contains only one variable, you can solve for x directly.
x=20000
Add 5000 to 15000.
x=20000,y=15000
The system is now solved.
x-y=5000,1.15x-0.9y=9500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\1.15&-0.9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5000\\9500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\1.15&-0.9\end{matrix}\right))\left(\begin{matrix}1&-1\\1.15&-0.9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1.15&-0.9\end{matrix}\right))\left(\begin{matrix}5000\\9500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\1.15&-0.9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1.15&-0.9\end{matrix}\right))\left(\begin{matrix}5000\\9500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1.15&-0.9\end{matrix}\right))\left(\begin{matrix}5000\\9500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.9}{-0.9-\left(-1.15\right)}&-\frac{-1}{-0.9-\left(-1.15\right)}\\-\frac{1.15}{-0.9-\left(-1.15\right)}&\frac{1}{-0.9-\left(-1.15\right)}\end{matrix}\right)\left(\begin{matrix}5000\\9500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3.6&4\\-4.6&4\end{matrix}\right)\left(\begin{matrix}5000\\9500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3.6\times 5000+4\times 9500\\-4.6\times 5000+4\times 9500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20000\\15000\end{matrix}\right)
Do the arithmetic.
x=20000,y=15000
Extract the matrix elements x and y.
x-y=5000,1.15x-0.9y=9500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1.15x+1.15\left(-1\right)y=1.15\times 5000,1.15x-0.9y=9500
To make x and \frac{23x}{20} equal, multiply all terms on each side of the first equation by 1.15 and all terms on each side of the second by 1.
1.15x-1.15y=5750,1.15x-0.9y=9500
Simplify.
1.15x-1.15x-1.15y+0.9y=5750-9500
Subtract 1.15x-0.9y=9500 from 1.15x-1.15y=5750 by subtracting like terms on each side of the equal sign.
-1.15y+0.9y=5750-9500
Add \frac{23x}{20} to -\frac{23x}{20}. Terms \frac{23x}{20} and -\frac{23x}{20} cancel out, leaving an equation with only one variable that can be solved.
-0.25y=5750-9500
Add -\frac{23y}{20} to \frac{9y}{10}.
-0.25y=-3750
Add 5750 to -9500.
y=15000
Multiply both sides by -4.
1.15x-0.9\times 15000=9500
Substitute 15000 for y in 1.15x-0.9y=9500. Because the resulting equation contains only one variable, you can solve for x directly.
1.15x-13500=9500
Multiply -0.9 times 15000.
1.15x=23000
Add 13500 to both sides of the equation.
x=20000
Divide both sides of the equation by 1.15, which is the same as multiplying both sides by the reciprocal of the fraction.
x=20000,y=15000
The system is now solved.