Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=200000;1,3x+1,2y=2260000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=200000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+200000
Add y to both sides of the equation.
1,3\left(y+200000\right)+1,2y=2260000
Substitute y+200000 for x in the other equation, 1,3x+1,2y=2260000.
1,3y+260000+1,2y=2260000
Multiply 1,3 times y+200000.
2,5y+260000=2260000
Add \frac{13y}{10} to \frac{6y}{5}.
2,5y=2000000
Subtract 260000 from both sides of the equation.
y=800000
Divide both sides of the equation by 2,5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=800000+200000
Substitute 800000 for y in x=y+200000. Because the resulting equation contains only one variable, you can solve for x directly.
x=1000000
Add 200000 to 800000.
x=1000000;y=800000
The system is now solved.
x-y=200000;1,3x+1,2y=2260000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\1,3&1,2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200000\\2260000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\1,3&1,2\end{matrix}\right))\left(\begin{matrix}1&-1\\1,3&1,2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1,3&1,2\end{matrix}\right))\left(\begin{matrix}200000\\2260000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\1,3&1,2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1,3&1,2\end{matrix}\right))\left(\begin{matrix}200000\\2260000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1,3&1,2\end{matrix}\right))\left(\begin{matrix}200000\\2260000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1,2}{1,2-\left(-1,3\right)}&-\frac{-1}{1,2-\left(-1,3\right)}\\-\frac{1,3}{1,2-\left(-1,3\right)}&\frac{1}{1,2-\left(-1,3\right)}\end{matrix}\right)\left(\begin{matrix}200000\\2260000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0,48&0,4\\-0,52&0,4\end{matrix}\right)\left(\begin{matrix}200000\\2260000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0,48\times 200000+0,4\times 2260000\\-0,52\times 200000+0,4\times 2260000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1000000\\800000\end{matrix}\right)
Do the arithmetic.
x=1000000;y=800000
Extract the matrix elements x and y.
x-y=200000;1,3x+1,2y=2260000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1,3x+1,3\left(-1\right)y=1,3\times 200000;1,3x+1,2y=2260000
To make x and \frac{13x}{10} equal, multiply all terms on each side of the first equation by 1,3 and all terms on each side of the second by 1.
1,3x-1,3y=260000;1,3x+1,2y=2260000
Simplify.
1,3x-1,3x-1,3y-1,2y=260000-2260000
Subtract 1,3x+1,2y=2260000 from 1,3x-1,3y=260000 by subtracting like terms on each side of the equal sign.
-1,3y-1,2y=260000-2260000
Add \frac{13x}{10} to -\frac{13x}{10}. Terms \frac{13x}{10} and -\frac{13x}{10} cancel out, leaving an equation with only one variable that can be solved.
-2,5y=260000-2260000
Add -\frac{13y}{10} to -\frac{6y}{5}.
-2,5y=-2000000
Add 260000 to -2260000.
y=800000
Divide both sides of the equation by -2,5, which is the same as multiplying both sides by the reciprocal of the fraction.
1,3x+1,2\times 800000=2260000
Substitute 800000 for y in 1,3x+1,2y=2260000. Because the resulting equation contains only one variable, you can solve for x directly.
1,3x+960000=2260000
Multiply 1,2 times 800000.
1,3x=1300000
Subtract 960000 from both sides of the equation.
x=1000000
Divide both sides of the equation by 1,3, which is the same as multiplying both sides by the reciprocal of the fraction.
x=1000000;y=800000
The system is now solved.