\left\{ \begin{array} { l } { x - 6 = - \frac { 1 } { 3 } } \\ { \frac { x - 3 } { 5 } + y = x + \frac { 21 } { 5 } } \end{array} \right.
Solve for x, y
x = \frac{17}{3} = 5\frac{2}{3} \approx 5.666666667
y = \frac{28}{3} = 9\frac{1}{3} \approx 9.333333333
Graph
Share
Copied to clipboard
x=-\frac{1}{3}+6
Consider the first equation. Add 6 to both sides.
x=\frac{17}{3}
Add -\frac{1}{3} and 6 to get \frac{17}{3}.
\frac{\frac{17}{3}-3}{5}+y=\frac{17}{3}+\frac{21}{5}
Consider the second equation. Insert the known values of variables into the equation.
3\left(\frac{17}{3}-3\right)+15y=85+63
Multiply both sides of the equation by 15, the least common multiple of 5,3.
3\times \frac{8}{3}+15y=85+63
Subtract 3 from \frac{17}{3} to get \frac{8}{3}.
8+15y=85+63
Multiply 3 and \frac{8}{3} to get 8.
8+15y=148
Add 85 and 63 to get 148.
15y=148-8
Subtract 8 from both sides.
15y=140
Subtract 8 from 148 to get 140.
y=\frac{140}{15}
Divide both sides by 15.
y=\frac{28}{3}
Reduce the fraction \frac{140}{15} to lowest terms by extracting and canceling out 5.
x=\frac{17}{3} y=\frac{28}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}