\left\{ \begin{array} { l } { x - 1 = 2 ( y - 1 ) } \\ { y + 11 = \frac { 2 } { 3 } ( x + 1 ) } \end{array} \right.
Solve for x, y
x=65
y=33
Graph
Share
Copied to clipboard
x-1=2y-2
Consider the first equation. Use the distributive property to multiply 2 by y-1.
x-1-2y=-2
Subtract 2y from both sides.
x-2y=-2+1
Add 1 to both sides.
x-2y=-1
Add -2 and 1 to get -1.
y+11=\frac{2}{3}x+\frac{2}{3}
Consider the second equation. Use the distributive property to multiply \frac{2}{3} by x+1.
y+11-\frac{2}{3}x=\frac{2}{3}
Subtract \frac{2}{3}x from both sides.
y-\frac{2}{3}x=\frac{2}{3}-11
Subtract 11 from both sides.
y-\frac{2}{3}x=-\frac{31}{3}
Subtract 11 from \frac{2}{3} to get -\frac{31}{3}.
x-2y=-1,-\frac{2}{3}x+y=-\frac{31}{3}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=-1
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=2y-1
Add 2y to both sides of the equation.
-\frac{2}{3}\left(2y-1\right)+y=-\frac{31}{3}
Substitute 2y-1 for x in the other equation, -\frac{2}{3}x+y=-\frac{31}{3}.
-\frac{4}{3}y+\frac{2}{3}+y=-\frac{31}{3}
Multiply -\frac{2}{3} times 2y-1.
-\frac{1}{3}y+\frac{2}{3}=-\frac{31}{3}
Add -\frac{4y}{3} to y.
-\frac{1}{3}y=-11
Subtract \frac{2}{3} from both sides of the equation.
y=33
Multiply both sides by -3.
x=2\times 33-1
Substitute 33 for y in x=2y-1. Because the resulting equation contains only one variable, you can solve for x directly.
x=66-1
Multiply 2 times 33.
x=65
Add -1 to 66.
x=65,y=33
The system is now solved.
x-1=2y-2
Consider the first equation. Use the distributive property to multiply 2 by y-1.
x-1-2y=-2
Subtract 2y from both sides.
x-2y=-2+1
Add 1 to both sides.
x-2y=-1
Add -2 and 1 to get -1.
y+11=\frac{2}{3}x+\frac{2}{3}
Consider the second equation. Use the distributive property to multiply \frac{2}{3} by x+1.
y+11-\frac{2}{3}x=\frac{2}{3}
Subtract \frac{2}{3}x from both sides.
y-\frac{2}{3}x=\frac{2}{3}-11
Subtract 11 from both sides.
y-\frac{2}{3}x=-\frac{31}{3}
Subtract 11 from \frac{2}{3} to get -\frac{31}{3}.
x-2y=-1,-\frac{2}{3}x+y=-\frac{31}{3}
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-2\\-\frac{2}{3}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-\frac{31}{3}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-2\\-\frac{2}{3}&1\end{matrix}\right))\left(\begin{matrix}1&-2\\-\frac{2}{3}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-\frac{2}{3}&1\end{matrix}\right))\left(\begin{matrix}-1\\-\frac{31}{3}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-2\\-\frac{2}{3}&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-\frac{2}{3}&1\end{matrix}\right))\left(\begin{matrix}-1\\-\frac{31}{3}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-\frac{2}{3}&1\end{matrix}\right))\left(\begin{matrix}-1\\-\frac{31}{3}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\left(-\frac{2}{3}\right)\right)}&-\frac{-2}{1-\left(-2\left(-\frac{2}{3}\right)\right)}\\-\frac{-\frac{2}{3}}{1-\left(-2\left(-\frac{2}{3}\right)\right)}&\frac{1}{1-\left(-2\left(-\frac{2}{3}\right)\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-\frac{31}{3}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&-6\\-2&-3\end{matrix}\right)\left(\begin{matrix}-1\\-\frac{31}{3}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\left(-1\right)-6\left(-\frac{31}{3}\right)\\-2\left(-1\right)-3\left(-\frac{31}{3}\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}65\\33\end{matrix}\right)
Do the arithmetic.
x=65,y=33
Extract the matrix elements x and y.
x-1=2y-2
Consider the first equation. Use the distributive property to multiply 2 by y-1.
x-1-2y=-2
Subtract 2y from both sides.
x-2y=-2+1
Add 1 to both sides.
x-2y=-1
Add -2 and 1 to get -1.
y+11=\frac{2}{3}x+\frac{2}{3}
Consider the second equation. Use the distributive property to multiply \frac{2}{3} by x+1.
y+11-\frac{2}{3}x=\frac{2}{3}
Subtract \frac{2}{3}x from both sides.
y-\frac{2}{3}x=\frac{2}{3}-11
Subtract 11 from both sides.
y-\frac{2}{3}x=-\frac{31}{3}
Subtract 11 from \frac{2}{3} to get -\frac{31}{3}.
x-2y=-1,-\frac{2}{3}x+y=-\frac{31}{3}
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-\frac{2}{3}x-\frac{2}{3}\left(-2\right)y=-\frac{2}{3}\left(-1\right),-\frac{2}{3}x+y=-\frac{31}{3}
To make x and -\frac{2x}{3} equal, multiply all terms on each side of the first equation by -\frac{2}{3} and all terms on each side of the second by 1.
-\frac{2}{3}x+\frac{4}{3}y=\frac{2}{3},-\frac{2}{3}x+y=-\frac{31}{3}
Simplify.
-\frac{2}{3}x+\frac{2}{3}x+\frac{4}{3}y-y=\frac{2+31}{3}
Subtract -\frac{2}{3}x+y=-\frac{31}{3} from -\frac{2}{3}x+\frac{4}{3}y=\frac{2}{3} by subtracting like terms on each side of the equal sign.
\frac{4}{3}y-y=\frac{2+31}{3}
Add -\frac{2x}{3} to \frac{2x}{3}. Terms -\frac{2x}{3} and \frac{2x}{3} cancel out, leaving an equation with only one variable that can be solved.
\frac{1}{3}y=\frac{2+31}{3}
Add \frac{4y}{3} to -y.
\frac{1}{3}y=11
Add \frac{2}{3} to \frac{31}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=33
Multiply both sides by 3.
-\frac{2}{3}x+33=-\frac{31}{3}
Substitute 33 for y in -\frac{2}{3}x+y=-\frac{31}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
-\frac{2}{3}x=-\frac{130}{3}
Subtract 33 from both sides of the equation.
x=65
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=65,y=33
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}