\left\{ \begin{array} { l } { x ^ { 2 } - 2 y ^ { 2 } = 8 } \\ { x + 2 y = 2 } \end{array} \right.
Solve for x, y
x=2\sqrt{6}-2\approx 2.898979486\text{, }y=2-\sqrt{6}\approx -0.449489743
x=-2\sqrt{6}-2\approx -6.898979486\text{, }y=\sqrt{6}+2\approx 4.449489743
Graph
Share
Copied to clipboard
x+2y=2,-2y^{2}+x^{2}=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=2
Solve x+2y=2 for x by isolating x on the left hand side of the equal sign.
x=-2y+2
Subtract 2y from both sides of the equation.
-2y^{2}+\left(-2y+2\right)^{2}=8
Substitute -2y+2 for x in the other equation, -2y^{2}+x^{2}=8.
-2y^{2}+4y^{2}-8y+4=8
Square -2y+2.
2y^{2}-8y+4=8
Add -2y^{2} to 4y^{2}.
2y^{2}-8y-4=0
Subtract 8 from both sides of the equation.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2+1\left(-2\right)^{2} for a, 1\times 2\left(-2\right)\times 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-4\right)}}{2\times 2}
Square 1\times 2\left(-2\right)\times 2.
y=\frac{-\left(-8\right)±\sqrt{64-8\left(-4\right)}}{2\times 2}
Multiply -4 times -2+1\left(-2\right)^{2}.
y=\frac{-\left(-8\right)±\sqrt{64+32}}{2\times 2}
Multiply -8 times -4.
y=\frac{-\left(-8\right)±\sqrt{96}}{2\times 2}
Add 64 to 32.
y=\frac{-\left(-8\right)±4\sqrt{6}}{2\times 2}
Take the square root of 96.
y=\frac{8±4\sqrt{6}}{2\times 2}
The opposite of 1\times 2\left(-2\right)\times 2 is 8.
y=\frac{8±4\sqrt{6}}{4}
Multiply 2 times -2+1\left(-2\right)^{2}.
y=\frac{4\sqrt{6}+8}{4}
Now solve the equation y=\frac{8±4\sqrt{6}}{4} when ± is plus. Add 8 to 4\sqrt{6}.
y=\sqrt{6}+2
Divide 8+4\sqrt{6} by 4.
y=\frac{8-4\sqrt{6}}{4}
Now solve the equation y=\frac{8±4\sqrt{6}}{4} when ± is minus. Subtract 4\sqrt{6} from 8.
y=2-\sqrt{6}
Divide 8-4\sqrt{6} by 4.
x=-2\left(\sqrt{6}+2\right)+2
There are two solutions for y: 2+\sqrt{6} and 2-\sqrt{6}. Substitute 2+\sqrt{6} for y in the equation x=-2y+2 to find the corresponding solution for x that satisfies both equations.
x=-2\left(2-\sqrt{6}\right)+2
Now substitute 2-\sqrt{6} for y in the equation x=-2y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=-2\left(\sqrt{6}+2\right)+2,y=\sqrt{6}+2\text{ or }x=-2\left(2-\sqrt{6}\right)+2,y=2-\sqrt{6}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}