Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-x=a
Consider the second equation. Subtract x from both sides.
y=x+a
Subtract -x from both sides of the equation.
x^{2}+\left(x+a\right)^{2}=9
Substitute x+a for y in the other equation, x^{2}+y^{2}=9.
x^{2}+x^{2}+2ax+a^{2}=9
Square x+a.
2x^{2}+2ax+a^{2}=9
Add x^{2} to x^{2}.
2x^{2}+2ax+a^{2}-9=0
Subtract 9 from both sides of the equation.
x=\frac{-2a±\sqrt{\left(2a\right)^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 1\times 2a for b, and -9+a^{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2a±\sqrt{4a^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
Square 1\times 1\times 2a.
x=\frac{-2a±\sqrt{4a^{2}-8\left(a^{2}-9\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-2a±\sqrt{4a^{2}+72-8a^{2}}}{2\times 2}
Multiply -8 times -9+a^{2}.
x=\frac{-2a±\sqrt{72-4a^{2}}}{2\times 2}
Add 4a^{2} to 72-8a^{2}.
x=\frac{-2a±2\sqrt{18-a^{2}}}{2\times 2}
Take the square root of 72-4a^{2}.
x=\frac{-2a±2\sqrt{18-a^{2}}}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{2\sqrt{18-a^{2}}-2a}{4}
Now solve the equation x=\frac{-2a±2\sqrt{18-a^{2}}}{4} when ± is plus. Add -2a to 2\sqrt{18-a^{2}}.
x=\frac{\sqrt{18-a^{2}}-a}{2}
Divide -2a+2\sqrt{18-a^{2}} by 4.
x=\frac{-2\sqrt{18-a^{2}}-2a}{4}
Now solve the equation x=\frac{-2a±2\sqrt{18-a^{2}}}{4} when ± is minus. Subtract 2\sqrt{18-a^{2}} from -2a.
x=\frac{-\sqrt{18-a^{2}}-a}{2}
Divide -2a-2\sqrt{18-a^{2}} by 4.
y=\frac{\sqrt{18-a^{2}}-a}{2}+a
There are two solutions for x: \frac{-a+\sqrt{18-a^{2}}}{2} and \frac{-a-\sqrt{18-a^{2}}}{2}. Substitute \frac{-a+\sqrt{18-a^{2}}}{2} for x in the equation y=x+a to find the corresponding solution for y that satisfies both equations.
y=\frac{-\sqrt{18-a^{2}}-a}{2}+a
Now substitute \frac{-a-\sqrt{18-a^{2}}}{2} for x in the equation y=x+a and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{18-a^{2}}-a}{2}+a,x=\frac{\sqrt{18-a^{2}}-a}{2}\text{ or }y=\frac{-\sqrt{18-a^{2}}-a}{2}+a,x=\frac{-\sqrt{18-a^{2}}-a}{2}
The system is now solved.
y-x=a
Consider the second equation. Subtract x from both sides.
y-x=a,x^{2}+y^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=a
Solve y-x=a for y by isolating y on the left hand side of the equal sign.
y=x+a
Subtract -x from both sides of the equation.
x^{2}+\left(x+a\right)^{2}=9
Substitute x+a for y in the other equation, x^{2}+y^{2}=9.
x^{2}+x^{2}+2ax+a^{2}=9
Square x+a.
2x^{2}+2ax+a^{2}=9
Add x^{2} to x^{2}.
2x^{2}+2ax+a^{2}-9=0
Subtract 9 from both sides of the equation.
x=\frac{-2a±\sqrt{\left(2a\right)^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 1\times 2a for b, and -9+a^{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2a±\sqrt{4a^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
Square 1\times 1\times 2a.
x=\frac{-2a±\sqrt{4a^{2}-8\left(a^{2}-9\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-2a±\sqrt{4a^{2}+72-8a^{2}}}{2\times 2}
Multiply -8 times -9+a^{2}.
x=\frac{-2a±\sqrt{72-4a^{2}}}{2\times 2}
Add 4a^{2} to 72-8a^{2}.
x=\frac{-2a±2\sqrt{18-a^{2}}}{2\times 2}
Take the square root of 72-4a^{2}.
x=\frac{-2a±2\sqrt{18-a^{2}}}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{2\sqrt{18-a^{2}}-2a}{4}
Now solve the equation x=\frac{-2a±2\sqrt{18-a^{2}}}{4} when ± is plus. Add -2a to 2\sqrt{18-a^{2}}.
x=\frac{\sqrt{18-a^{2}}-a}{2}
Divide -2a+2\sqrt{18-a^{2}} by 4.
x=\frac{-2\sqrt{18-a^{2}}-2a}{4}
Now solve the equation x=\frac{-2a±2\sqrt{18-a^{2}}}{4} when ± is minus. Subtract 2\sqrt{18-a^{2}} from -2a.
x=\frac{-\sqrt{18-a^{2}}-a}{2}
Divide -2a-2\sqrt{18-a^{2}} by 4.
y=\frac{\sqrt{18-a^{2}}-a}{2}+a
There are two solutions for x: \frac{-a+\sqrt{18-a^{2}}}{2} and \frac{-a-\sqrt{18-a^{2}}}{2}. Substitute \frac{-a+\sqrt{18-a^{2}}}{2} for x in the equation y=x+a to find the corresponding solution for y that satisfies both equations.
y=\frac{-\sqrt{18-a^{2}}-a}{2}+a
Now substitute \frac{-a-\sqrt{18-a^{2}}}{2} for x in the equation y=x+a and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{18-a^{2}}-a}{2}+a,x=\frac{\sqrt{18-a^{2}}-a}{2}\text{ or }y=\frac{-\sqrt{18-a^{2}}-a}{2}+a,x=\frac{-\sqrt{18-a^{2}}-a}{2}
The system is now solved.