\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 8 } \\ { x + y = m } \end{array} \right.
Solve for x, y (complex solution)
x=\frac{\sqrt{16-m^{2}}+m}{2}\text{, }y=\frac{-\sqrt{16-m^{2}}+m}{2}
x=\frac{-\sqrt{16-m^{2}}+m}{2}\text{, }y=\frac{\sqrt{16-m^{2}}+m}{2}
Solve for x, y
x=\frac{\sqrt{16-m^{2}}+m}{2}\text{, }y=\frac{-\sqrt{16-m^{2}}+m}{2}
x=\frac{-\sqrt{16-m^{2}}+m}{2}\text{, }y=\frac{\sqrt{16-m^{2}}+m}{2}\text{, }|m|\leq 4
Graph
Share
Copied to clipboard
x+y=m
Solve x+y=m for x by isolating x on the left hand side of the equal sign.
x=-y+m
Subtract y from both sides of the equation.
y^{2}+\left(-y+m\right)^{2}=8
Substitute -y+m for x in the other equation, y^{2}+x^{2}=8.
y^{2}+y^{2}+\left(-2m\right)y+m^{2}=8
Square -y+m.
2y^{2}+\left(-2m\right)y+m^{2}=8
Add y^{2} to y^{2}.
2y^{2}+\left(-2m\right)y+m^{2}-8=0
Subtract 8 from both sides of the equation.
y=\frac{-\left(-2m\right)±\sqrt{\left(-2m\right)^{2}-4\times 2\left(m^{2}-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\left(-1\right)\times 2m for b, and m^{2}-8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2m\right)±\sqrt{4m^{2}-4\times 2\left(m^{2}-8\right)}}{2\times 2}
Square 1\left(-1\right)\times 2m.
y=\frac{-\left(-2m\right)±\sqrt{4m^{2}-8\left(m^{2}-8\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2m\right)±\sqrt{4m^{2}+64-8m^{2}}}{2\times 2}
Multiply -8 times m^{2}-8.
y=\frac{-\left(-2m\right)±\sqrt{64-4m^{2}}}{2\times 2}
Add 4m^{2} to -8m^{2}+64.
y=\frac{-\left(-2m\right)±2\sqrt{\left(4-m\right)\left(m+4\right)}}{2\times 2}
Take the square root of -4m^{2}+64.
y=\frac{2m±2\sqrt{\left(4-m\right)\left(m+4\right)}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{16-m^{2}}+2m}{4}
Now solve the equation y=\frac{2m±2\sqrt{\left(4-m\right)\left(m+4\right)}}{4} when ± is plus. Add 2m to 2\sqrt{\left(4+m\right)\left(4-m\right)}.
y=\frac{\sqrt{16-m^{2}}+m}{2}
Divide 2m+2\sqrt{16-m^{2}} by 4.
y=\frac{-2\sqrt{16-m^{2}}+2m}{4}
Now solve the equation y=\frac{2m±2\sqrt{\left(4-m\right)\left(m+4\right)}}{4} when ± is minus. Subtract 2\sqrt{\left(4+m\right)\left(4-m\right)} from 2m.
y=\frac{-\sqrt{16-m^{2}}+m}{2}
Divide 2m-2\sqrt{-m^{2}+16} by 4.
x=-\frac{\sqrt{16-m^{2}}+m}{2}+m
There are two solutions for y: \frac{m+\sqrt{16-m^{2}}}{2} and \frac{m-\sqrt{16-m^{2}}}{2}. Substitute \frac{m+\sqrt{16-m^{2}}}{2} for y in the equation x=-y+m to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{16-m^{2}}+m}{2}+m
Now substitute \frac{m-\sqrt{16-m^{2}}}{2} for y in the equation x=-y+m and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{16-m^{2}}+m}{2}+m,y=\frac{\sqrt{16-m^{2}}+m}{2}\text{ or }x=-\frac{-\sqrt{16-m^{2}}+m}{2}+m,y=\frac{-\sqrt{16-m^{2}}+m}{2}
The system is now solved.
x+y=m,y^{2}+x^{2}=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=m
Solve x+y=m for x by isolating x on the left hand side of the equal sign.
x=-y+m
Subtract y from both sides of the equation.
y^{2}+\left(-y+m\right)^{2}=8
Substitute -y+m for x in the other equation, y^{2}+x^{2}=8.
y^{2}+y^{2}+\left(-2m\right)y+m^{2}=8
Square -y+m.
2y^{2}+\left(-2m\right)y+m^{2}=8
Add y^{2} to y^{2}.
2y^{2}+\left(-2m\right)y+m^{2}-8=0
Subtract 8 from both sides of the equation.
y=\frac{-\left(-2m\right)±\sqrt{\left(-2m\right)^{2}-4\times 2\left(m^{2}-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\left(-1\right)\times 2m for b, and m^{2}-8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2m\right)±\sqrt{4m^{2}-4\times 2\left(m^{2}-8\right)}}{2\times 2}
Square 1\left(-1\right)\times 2m.
y=\frac{-\left(-2m\right)±\sqrt{4m^{2}-8\left(m^{2}-8\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2m\right)±\sqrt{4m^{2}+64-8m^{2}}}{2\times 2}
Multiply -8 times m^{2}-8.
y=\frac{-\left(-2m\right)±\sqrt{64-4m^{2}}}{2\times 2}
Add 4m^{2} to -8m^{2}+64.
y=\frac{-\left(-2m\right)±2\sqrt{16-m^{2}}}{2\times 2}
Take the square root of -4m^{2}+64.
y=\frac{2m±2\sqrt{16-m^{2}}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{16-m^{2}}+2m}{4}
Now solve the equation y=\frac{2m±2\sqrt{16-m^{2}}}{4} when ± is plus. Add 2m to 2\sqrt{16-m^{2}}.
y=\frac{\sqrt{16-m^{2}}+m}{2}
Divide 2m+2\sqrt{16-m^{2}} by 4.
y=\frac{-2\sqrt{16-m^{2}}+2m}{4}
Now solve the equation y=\frac{2m±2\sqrt{16-m^{2}}}{4} when ± is minus. Subtract 2\sqrt{16-m^{2}} from 2m.
y=\frac{-\sqrt{16-m^{2}}+m}{2}
Divide 2m-2\sqrt{16-m^{2}} by 4.
x=-\frac{\sqrt{16-m^{2}}+m}{2}+m
There are two solutions for y: \frac{m+\sqrt{16-m^{2}}}{2} and \frac{m-\sqrt{16-m^{2}}}{2}. Substitute \frac{m+\sqrt{16-m^{2}}}{2} for y in the equation x=-y+m to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{16-m^{2}}+m}{2}+m
Now substitute \frac{m-\sqrt{16-m^{2}}}{2} for y in the equation x=-y+m and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{16-m^{2}}+m}{2}+m,y=\frac{\sqrt{16-m^{2}}+m}{2}\text{ or }x=-\frac{-\sqrt{16-m^{2}}+m}{2}+m,y=\frac{-\sqrt{16-m^{2}}+m}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}