\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 251 } \\ { x + y = 7 } \end{array} \right.
Solve for x, y
x=\frac{\sqrt{453}+7}{2}\approx 14.141898327\text{, }y=\frac{7-\sqrt{453}}{2}\approx -7.141898327
x=\frac{7-\sqrt{453}}{2}\approx -7.141898327\text{, }y=\frac{\sqrt{453}+7}{2}\approx 14.141898327
Graph
Share
Copied to clipboard
x+y=7,y^{2}+x^{2}=251
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=7
Solve x+y=7 for x by isolating x on the left hand side of the equal sign.
x=-y+7
Subtract y from both sides of the equation.
y^{2}+\left(-y+7\right)^{2}=251
Substitute -y+7 for x in the other equation, y^{2}+x^{2}=251.
y^{2}+y^{2}-14y+49=251
Square -y+7.
2y^{2}-14y+49=251
Add y^{2} to y^{2}.
2y^{2}-14y-202=0
Subtract 251 from both sides of the equation.
y=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\left(-202\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 7\left(-1\right)\times 2 for b, and -202 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-14\right)±\sqrt{196-4\times 2\left(-202\right)}}{2\times 2}
Square 1\times 7\left(-1\right)\times 2.
y=\frac{-\left(-14\right)±\sqrt{196-8\left(-202\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-14\right)±\sqrt{196+1616}}{2\times 2}
Multiply -8 times -202.
y=\frac{-\left(-14\right)±\sqrt{1812}}{2\times 2}
Add 196 to 1616.
y=\frac{-\left(-14\right)±2\sqrt{453}}{2\times 2}
Take the square root of 1812.
y=\frac{14±2\sqrt{453}}{2\times 2}
The opposite of 1\times 7\left(-1\right)\times 2 is 14.
y=\frac{14±2\sqrt{453}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{453}+14}{4}
Now solve the equation y=\frac{14±2\sqrt{453}}{4} when ± is plus. Add 14 to 2\sqrt{453}.
y=\frac{\sqrt{453}+7}{2}
Divide 14+2\sqrt{453} by 4.
y=\frac{14-2\sqrt{453}}{4}
Now solve the equation y=\frac{14±2\sqrt{453}}{4} when ± is minus. Subtract 2\sqrt{453} from 14.
y=\frac{7-\sqrt{453}}{2}
Divide 14-2\sqrt{453} by 4.
x=-\frac{\sqrt{453}+7}{2}+7
There are two solutions for y: \frac{7+\sqrt{453}}{2} and \frac{7-\sqrt{453}}{2}. Substitute \frac{7+\sqrt{453}}{2} for y in the equation x=-y+7 to find the corresponding solution for x that satisfies both equations.
x=-\frac{7-\sqrt{453}}{2}+7
Now substitute \frac{7-\sqrt{453}}{2} for y in the equation x=-y+7 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{453}+7}{2}+7,y=\frac{\sqrt{453}+7}{2}\text{ or }x=-\frac{7-\sqrt{453}}{2}+7,y=\frac{7-\sqrt{453}}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}