\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = - 36 } \\ { y = x - 2 } \end{array} \right.
Solve for x, y (complex solution)
x=-\sqrt{19}i+1\approx 1-4.358898944i\text{, }y=-\sqrt{19}i-1\approx -1-4.358898944i
x=1+\sqrt{19}i\approx 1+4.358898944i\text{, }y=-1+\sqrt{19}i\approx -1+4.358898944i
Graph
Share
Copied to clipboard
y-x=-2
Consider the second equation. Subtract x from both sides.
y=x-2
Subtract -x from both sides of the equation.
x^{2}+\left(x-2\right)^{2}=-36
Substitute x-2 for y in the other equation, x^{2}+y^{2}=-36.
x^{2}+x^{2}-4x+4=-36
Square x-2.
2x^{2}-4x+4=-36
Add x^{2} to x^{2}.
2x^{2}-4x+40=0
Add 36 to both sides of the equation.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 40}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\left(-2\right)\times 1\times 2 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 40}}{2\times 2}
Square 1\left(-2\right)\times 1\times 2.
x=\frac{-\left(-4\right)±\sqrt{16-8\times 40}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-\left(-4\right)±\sqrt{16-320}}{2\times 2}
Multiply -8 times 40.
x=\frac{-\left(-4\right)±\sqrt{-304}}{2\times 2}
Add 16 to -320.
x=\frac{-\left(-4\right)±4\sqrt{19}i}{2\times 2}
Take the square root of -304.
x=\frac{4±4\sqrt{19}i}{2\times 2}
The opposite of 1\left(-2\right)\times 1\times 2 is 4.
x=\frac{4±4\sqrt{19}i}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{4+4\sqrt{19}i}{4}
Now solve the equation x=\frac{4±4\sqrt{19}i}{4} when ± is plus. Add 4 to 4i\sqrt{19}.
x=1+\sqrt{19}i
Divide 4+4i\sqrt{19} by 4.
x=\frac{-4\sqrt{19}i+4}{4}
Now solve the equation x=\frac{4±4\sqrt{19}i}{4} when ± is minus. Subtract 4i\sqrt{19} from 4.
x=-\sqrt{19}i+1
Divide 4-4i\sqrt{19} by 4.
y=1+\sqrt{19}i-2
There are two solutions for x: 1+i\sqrt{19} and 1-i\sqrt{19}. Substitute 1+i\sqrt{19} for x in the equation y=x-2 to find the corresponding solution for y that satisfies both equations.
y=-1+\sqrt{19}i
Add 1\left(1+i\sqrt{19}\right) to -2.
y=-\sqrt{19}i+1-2
Now substitute 1-i\sqrt{19} for x in the equation y=x-2 and solve to find the corresponding solution for y that satisfies both equations.
y=-\sqrt{19}i-1
Add 1\left(1-i\sqrt{19}\right) to -2.
y=-1+\sqrt{19}i,x=1+\sqrt{19}i\text{ or }y=-\sqrt{19}i-1,x=-\sqrt{19}i+1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}