\left\{ \begin{array} { l } { x = 4 y + 6 } \\ { y = \frac { 4 y + b } { 3 } } \end{array} \right.
Solve for x, y
x=6-4b
y=-b
Graph
Share
Copied to clipboard
y=\frac{4}{3}y+\frac{1}{3}b
Consider the second equation. Divide each term of 4y+b by 3 to get \frac{4}{3}y+\frac{1}{3}b.
y-\frac{4}{3}y=\frac{1}{3}b
Subtract \frac{4}{3}y from both sides.
-\frac{1}{3}y=\frac{1}{3}b
Combine y and -\frac{4}{3}y to get -\frac{1}{3}y.
x-4y=6
Consider the first equation. Subtract 4y from both sides.
-\frac{1}{3}y=\frac{b}{3},-4y+x=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-\frac{1}{3}y=\frac{b}{3}
Pick one of the two equations which is more simple to solve for y by isolating y on the left hand side of the equal sign.
y=-b
Multiply both sides by -3.
-4\left(-b\right)+x=6
Substitute -b for y in the other equation, -4y+x=6.
4b+x=6
Multiply -4 times -b.
x=6-4b
Subtract 4b from both sides of the equation.
y=-b,x=6-4b
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}