\left\{ \begin{array} { l } { x = 3 y } \\ { 2 x + y + 7 = 0 } \end{array} \right.
Solve for x, y
x=-3
y=-1
Graph
Share
Copied to clipboard
x-3y=0
Consider the first equation. Subtract 3y from both sides.
2x+y=-7
Consider the second equation. Subtract 7 from both sides. Anything subtracted from zero gives its negation.
x-3y=0,2x+y=-7
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-3y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=3y
Add 3y to both sides of the equation.
2\times 3y+y=-7
Substitute 3y for x in the other equation, 2x+y=-7.
6y+y=-7
Multiply 2 times 3y.
7y=-7
Add 6y to y.
y=-1
Divide both sides by 7.
x=3\left(-1\right)
Substitute -1 for y in x=3y. Because the resulting equation contains only one variable, you can solve for x directly.
x=-3
Multiply 3 times -1.
x=-3,y=-1
The system is now solved.
x-3y=0
Consider the first equation. Subtract 3y from both sides.
2x+y=-7
Consider the second equation. Subtract 7 from both sides. Anything subtracted from zero gives its negation.
x-3y=0,2x+y=-7
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-7\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-3\\2&1\end{matrix}\right))\left(\begin{matrix}1&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&1\end{matrix}\right))\left(\begin{matrix}0\\-7\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-3\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&1\end{matrix}\right))\left(\begin{matrix}0\\-7\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&1\end{matrix}\right))\left(\begin{matrix}0\\-7\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\times 2\right)}&-\frac{-3}{1-\left(-3\times 2\right)}\\-\frac{2}{1-\left(-3\times 2\right)}&\frac{1}{1-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}0\\-7\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{3}{7}\\-\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}0\\-7\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-7\right)\\\frac{1}{7}\left(-7\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-1\end{matrix}\right)
Do the arithmetic.
x=-3,y=-1
Extract the matrix elements x and y.
x-3y=0
Consider the first equation. Subtract 3y from both sides.
2x+y=-7
Consider the second equation. Subtract 7 from both sides. Anything subtracted from zero gives its negation.
x-3y=0,2x+y=-7
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+2\left(-3\right)y=0,2x+y=-7
To make x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2x-6y=0,2x+y=-7
Simplify.
2x-2x-6y-y=7
Subtract 2x+y=-7 from 2x-6y=0 by subtracting like terms on each side of the equal sign.
-6y-y=7
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-7y=7
Add -6y to -y.
y=-1
Divide both sides by -7.
2x-1=-7
Substitute -1 for y in 2x+y=-7. Because the resulting equation contains only one variable, you can solve for x directly.
2x=-6
Add 1 to both sides of the equation.
x=-3
Divide both sides by 2.
x=-3,y=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}