\left\{ \begin{array} { l } { x = 2 \cdot 5 } \\ { y = x ^ { 3 } - 6 \cdot 9 x ^ { 2 } + 15 \cdot 87 x - 12 \cdot 167 } \end{array} \right.
Solve for x, y
x=10
y=6646
Graph
Share
Copied to clipboard
x=10
Consider the first equation. Multiply 2 and 5 to get 10.
y=10^{3}-6\times 9\times 10^{2}+15\times 87\times 10-12\times 167
Consider the second equation. Insert the known values of variables into the equation.
y=1000-6\times 9\times 10^{2}+15\times 87\times 10-12\times 167
Calculate 10 to the power of 3 and get 1000.
y=1000-54\times 10^{2}+15\times 87\times 10-12\times 167
Multiply 6 and 9 to get 54.
y=1000-54\times 100+15\times 87\times 10-12\times 167
Calculate 10 to the power of 2 and get 100.
y=1000-5400+15\times 87\times 10-12\times 167
Multiply 54 and 100 to get 5400.
y=-4400+15\times 87\times 10-12\times 167
Subtract 5400 from 1000 to get -4400.
y=-4400+1305\times 10-12\times 167
Multiply 15 and 87 to get 1305.
y=-4400+13050-12\times 167
Multiply 1305 and 10 to get 13050.
y=8650-12\times 167
Add -4400 and 13050 to get 8650.
y=8650-2004
Multiply 12 and 167 to get 2004.
y=6646
Subtract 2004 from 8650 to get 6646.
x=10 y=6646
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}