\left\{ \begin{array} { l } { x = \sqrt { 2 } } \\ { \frac { 2 x + 8 } { x ^ { 2 } + 4 x + 7 } = y } \end{array} \right.
Solve for x, y
x=\sqrt{2}\approx 1.414213562
y=\frac{8-2\sqrt{2}}{7}\approx 0.738796125
Graph
Share
Copied to clipboard
\frac{2\sqrt{2}+8}{\left(\sqrt{2}\right)^{2}+4\sqrt{2}+7}=y
Consider the second equation. Insert the known values of variables into the equation.
\frac{2\sqrt{2}+8}{2+4\sqrt{2}+7}=y
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}+8}{9+4\sqrt{2}}=y
Add 2 and 7 to get 9.
\frac{\left(2\sqrt{2}+8\right)\left(9-4\sqrt{2}\right)}{\left(9+4\sqrt{2}\right)\left(9-4\sqrt{2}\right)}=y
Rationalize the denominator of \frac{2\sqrt{2}+8}{9+4\sqrt{2}} by multiplying numerator and denominator by 9-4\sqrt{2}.
\frac{\left(2\sqrt{2}+8\right)\left(9-4\sqrt{2}\right)}{9^{2}-\left(4\sqrt{2}\right)^{2}}=y
Consider \left(9+4\sqrt{2}\right)\left(9-4\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{2}+8\right)\left(9-4\sqrt{2}\right)}{81-\left(4\sqrt{2}\right)^{2}}=y
Calculate 9 to the power of 2 and get 81.
\frac{\left(2\sqrt{2}+8\right)\left(9-4\sqrt{2}\right)}{81-4^{2}\left(\sqrt{2}\right)^{2}}=y
Expand \left(4\sqrt{2}\right)^{2}.
\frac{\left(2\sqrt{2}+8\right)\left(9-4\sqrt{2}\right)}{81-16\left(\sqrt{2}\right)^{2}}=y
Calculate 4 to the power of 2 and get 16.
\frac{\left(2\sqrt{2}+8\right)\left(9-4\sqrt{2}\right)}{81-16\times 2}=y
The square of \sqrt{2} is 2.
\frac{\left(2\sqrt{2}+8\right)\left(9-4\sqrt{2}\right)}{81-32}=y
Multiply 16 and 2 to get 32.
\frac{\left(2\sqrt{2}+8\right)\left(9-4\sqrt{2}\right)}{49}=y
Subtract 32 from 81 to get 49.
\frac{-14\sqrt{2}-8\left(\sqrt{2}\right)^{2}+72}{49}=y
Use the distributive property to multiply 2\sqrt{2}+8 by 9-4\sqrt{2} and combine like terms.
\frac{-14\sqrt{2}-8\times 2+72}{49}=y
The square of \sqrt{2} is 2.
\frac{-14\sqrt{2}-16+72}{49}=y
Multiply -8 and 2 to get -16.
\frac{-14\sqrt{2}+56}{49}=y
Add -16 and 72 to get 56.
-\frac{2}{7}\sqrt{2}+\frac{8}{7}=y
Divide each term of -14\sqrt{2}+56 by 49 to get -\frac{2}{7}\sqrt{2}+\frac{8}{7}.
y=-\frac{2}{7}\sqrt{2}+\frac{8}{7}
Swap sides so that all variable terms are on the left hand side.
x=\sqrt{2} y=-\frac{2}{7}\sqrt{2}+\frac{8}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}