\left\{ \begin{array} { l } { x + y - z = 6 } \\ { x - 3 y + 2 z = 1 } \\ { 3 x + 2 y - z = 4 } \end{array} \right.
Solve for x, y, z
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
y = -\frac{32}{5} = -6\frac{2}{5} = -6.4
z = -\frac{51}{5} = -10\frac{1}{5} = -10.2
Share
Copied to clipboard
x=-y+z+6
Solve x+y-z=6 for x.
-y+z+6-3y+2z=1 3\left(-y+z+6\right)+2y-z=4
Substitute -y+z+6 for x in the second and third equation.
y=\frac{3}{4}z+\frac{5}{4} z=\frac{1}{2}y-7
Solve these equations for y and z respectively.
z=\frac{1}{2}\left(\frac{3}{4}z+\frac{5}{4}\right)-7
Substitute \frac{3}{4}z+\frac{5}{4} for y in the equation z=\frac{1}{2}y-7.
z=-\frac{51}{5}
Solve z=\frac{1}{2}\left(\frac{3}{4}z+\frac{5}{4}\right)-7 for z.
y=\frac{3}{4}\left(-\frac{51}{5}\right)+\frac{5}{4}
Substitute -\frac{51}{5} for z in the equation y=\frac{3}{4}z+\frac{5}{4}.
y=-\frac{32}{5}
Calculate y from y=\frac{3}{4}\left(-\frac{51}{5}\right)+\frac{5}{4}.
x=-\left(-\frac{32}{5}\right)-\frac{51}{5}+6
Substitute -\frac{32}{5} for y and -\frac{51}{5} for z in the equation x=-y+z+6.
x=\frac{11}{5}
Calculate x from x=-\left(-\frac{32}{5}\right)-\frac{51}{5}+6.
x=\frac{11}{5} y=-\frac{32}{5} z=-\frac{51}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}