\left\{ \begin{array} { l } { x + y = z - 2 z } \\ { 3 x + y = 47 } \\ { x = 4 z + 2 } \end{array} \right.
Solve for x, y, z
x = \frac{186}{7} = 26\frac{4}{7} \approx 26.571428571
y = -\frac{229}{7} = -32\frac{5}{7} \approx -32.714285714
z = \frac{43}{7} = 6\frac{1}{7} \approx 6.142857143
Share
Copied to clipboard
x=4z+2 3x+y=47 x+y=z-2z
Reorder the equations.
3\left(2+4z\right)+y=47 2+4z+y=z-2z
Substitute 2+4z for x in the second and third equation.
y=41-12z z=-\frac{2}{5}-\frac{1}{5}y
Solve these equations for y and z respectively.
z=-\frac{2}{5}-\frac{1}{5}\left(41-12z\right)
Substitute 41-12z for y in the equation z=-\frac{2}{5}-\frac{1}{5}y.
z=\frac{43}{7}
Solve z=-\frac{2}{5}-\frac{1}{5}\left(41-12z\right) for z.
y=41-12\times \frac{43}{7}
Substitute \frac{43}{7} for z in the equation y=41-12z.
y=-\frac{229}{7}
Calculate y from y=41-12\times \frac{43}{7}.
x=4\times \frac{43}{7}+2
Substitute \frac{43}{7} for z in the equation x=4z+2.
x=\frac{186}{7}
Calculate x from x=4\times \frac{43}{7}+2.
x=\frac{186}{7} y=-\frac{229}{7} z=\frac{43}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}