Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=70,1800x+150y=3000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=70
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+70
Subtract y from both sides of the equation.
1800\left(-y+70\right)+150y=3000
Substitute -y+70 for x in the other equation, 1800x+150y=3000.
-1800y+126000+150y=3000
Multiply 1800 times -y+70.
-1650y+126000=3000
Add -1800y to 150y.
-1650y=-123000
Subtract 126000 from both sides of the equation.
y=\frac{820}{11}
Divide both sides by -1650.
x=-\frac{820}{11}+70
Substitute \frac{820}{11} for y in x=-y+70. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{50}{11}
Add 70 to -\frac{820}{11}.
x=-\frac{50}{11},y=\frac{820}{11}
The system is now solved.
x+y=70,1800x+150y=3000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1800&150\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}70\\3000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1800&150\end{matrix}\right))\left(\begin{matrix}1&1\\1800&150\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1800&150\end{matrix}\right))\left(\begin{matrix}70\\3000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1800&150\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1800&150\end{matrix}\right))\left(\begin{matrix}70\\3000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1800&150\end{matrix}\right))\left(\begin{matrix}70\\3000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{150}{150-1800}&-\frac{1}{150-1800}\\-\frac{1800}{150-1800}&\frac{1}{150-1800}\end{matrix}\right)\left(\begin{matrix}70\\3000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}&\frac{1}{1650}\\\frac{12}{11}&-\frac{1}{1650}\end{matrix}\right)\left(\begin{matrix}70\\3000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}\times 70+\frac{1}{1650}\times 3000\\\frac{12}{11}\times 70-\frac{1}{1650}\times 3000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{50}{11}\\\frac{820}{11}\end{matrix}\right)
Do the arithmetic.
x=-\frac{50}{11},y=\frac{820}{11}
Extract the matrix elements x and y.
x+y=70,1800x+150y=3000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1800x+1800y=1800\times 70,1800x+150y=3000
To make x and 1800x equal, multiply all terms on each side of the first equation by 1800 and all terms on each side of the second by 1.
1800x+1800y=126000,1800x+150y=3000
Simplify.
1800x-1800x+1800y-150y=126000-3000
Subtract 1800x+150y=3000 from 1800x+1800y=126000 by subtracting like terms on each side of the equal sign.
1800y-150y=126000-3000
Add 1800x to -1800x. Terms 1800x and -1800x cancel out, leaving an equation with only one variable that can be solved.
1650y=126000-3000
Add 1800y to -150y.
1650y=123000
Add 126000 to -3000.
y=\frac{820}{11}
Divide both sides by 1650.
1800x+150\times \frac{820}{11}=3000
Substitute \frac{820}{11} for y in 1800x+150y=3000. Because the resulting equation contains only one variable, you can solve for x directly.
1800x+\frac{123000}{11}=3000
Multiply 150 times \frac{820}{11}.
1800x=-\frac{90000}{11}
Subtract \frac{123000}{11} from both sides of the equation.
x=-\frac{50}{11}
Divide both sides by 1800.
x=-\frac{50}{11},y=\frac{820}{11}
The system is now solved.