\left\{ \begin{array} { l } { x + y = 68 } \\ { 99 x - 99 y = 2178 } \end{array} \right.
Solve for x, y
x=45
y=23
Graph
Share
Copied to clipboard
x+y=68,99x-99y=2178
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=68
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+68
Subtract y from both sides of the equation.
99\left(-y+68\right)-99y=2178
Substitute -y+68 for x in the other equation, 99x-99y=2178.
-99y+6732-99y=2178
Multiply 99 times -y+68.
-198y+6732=2178
Add -99y to -99y.
-198y=-4554
Subtract 6732 from both sides of the equation.
y=23
Divide both sides by -198.
x=-23+68
Substitute 23 for y in x=-y+68. Because the resulting equation contains only one variable, you can solve for x directly.
x=45
Add 68 to -23.
x=45,y=23
The system is now solved.
x+y=68,99x-99y=2178
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\99&-99\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}68\\2178\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\99&-99\end{matrix}\right))\left(\begin{matrix}1&1\\99&-99\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\99&-99\end{matrix}\right))\left(\begin{matrix}68\\2178\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\99&-99\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\99&-99\end{matrix}\right))\left(\begin{matrix}68\\2178\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\99&-99\end{matrix}\right))\left(\begin{matrix}68\\2178\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{99}{-99-99}&-\frac{1}{-99-99}\\-\frac{99}{-99-99}&\frac{1}{-99-99}\end{matrix}\right)\left(\begin{matrix}68\\2178\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{198}\\\frac{1}{2}&-\frac{1}{198}\end{matrix}\right)\left(\begin{matrix}68\\2178\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 68+\frac{1}{198}\times 2178\\\frac{1}{2}\times 68-\frac{1}{198}\times 2178\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\23\end{matrix}\right)
Do the arithmetic.
x=45,y=23
Extract the matrix elements x and y.
x+y=68,99x-99y=2178
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
99x+99y=99\times 68,99x-99y=2178
To make x and 99x equal, multiply all terms on each side of the first equation by 99 and all terms on each side of the second by 1.
99x+99y=6732,99x-99y=2178
Simplify.
99x-99x+99y+99y=6732-2178
Subtract 99x-99y=2178 from 99x+99y=6732 by subtracting like terms on each side of the equal sign.
99y+99y=6732-2178
Add 99x to -99x. Terms 99x and -99x cancel out, leaving an equation with only one variable that can be solved.
198y=6732-2178
Add 99y to 99y.
198y=4554
Add 6732 to -2178.
y=23
Divide both sides by 198.
99x-99\times 23=2178
Substitute 23 for y in 99x-99y=2178. Because the resulting equation contains only one variable, you can solve for x directly.
99x-2277=2178
Multiply -99 times 23.
99x=4455
Add 2277 to both sides of the equation.
x=45
Divide both sides by 99.
x=45,y=23
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}