\left\{ \begin{array} { l } { x + y = 50 } \\ { 25 x + 7 y = 300 } \end{array} \right.
Solve for x, y
x = -\frac{25}{9} = -2\frac{7}{9} \approx -2.777777778
y = \frac{475}{9} = 52\frac{7}{9} \approx 52.777777778
Graph
Share
Copied to clipboard
x+y=50,25x+7y=300
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=50
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+50
Subtract y from both sides of the equation.
25\left(-y+50\right)+7y=300
Substitute -y+50 for x in the other equation, 25x+7y=300.
-25y+1250+7y=300
Multiply 25 times -y+50.
-18y+1250=300
Add -25y to 7y.
-18y=-950
Subtract 1250 from both sides of the equation.
y=\frac{475}{9}
Divide both sides by -18.
x=-\frac{475}{9}+50
Substitute \frac{475}{9} for y in x=-y+50. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{25}{9}
Add 50 to -\frac{475}{9}.
x=-\frac{25}{9},y=\frac{475}{9}
The system is now solved.
x+y=50,25x+7y=300
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\25&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\300\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\25&7\end{matrix}\right))\left(\begin{matrix}1&1\\25&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\25&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-25}&-\frac{1}{7-25}\\-\frac{25}{7-25}&\frac{1}{7-25}\end{matrix}\right)\left(\begin{matrix}50\\300\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{18}&\frac{1}{18}\\\frac{25}{18}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}50\\300\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{18}\times 50+\frac{1}{18}\times 300\\\frac{25}{18}\times 50-\frac{1}{18}\times 300\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{25}{9}\\\frac{475}{9}\end{matrix}\right)
Do the arithmetic.
x=-\frac{25}{9},y=\frac{475}{9}
Extract the matrix elements x and y.
x+y=50,25x+7y=300
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
25x+25y=25\times 50,25x+7y=300
To make x and 25x equal, multiply all terms on each side of the first equation by 25 and all terms on each side of the second by 1.
25x+25y=1250,25x+7y=300
Simplify.
25x-25x+25y-7y=1250-300
Subtract 25x+7y=300 from 25x+25y=1250 by subtracting like terms on each side of the equal sign.
25y-7y=1250-300
Add 25x to -25x. Terms 25x and -25x cancel out, leaving an equation with only one variable that can be solved.
18y=1250-300
Add 25y to -7y.
18y=950
Add 1250 to -300.
y=\frac{475}{9}
Divide both sides by 18.
25x+7\times \frac{475}{9}=300
Substitute \frac{475}{9} for y in 25x+7y=300. Because the resulting equation contains only one variable, you can solve for x directly.
25x+\frac{3325}{9}=300
Multiply 7 times \frac{475}{9}.
25x=-\frac{625}{9}
Subtract \frac{3325}{9} from both sides of the equation.
x=-\frac{25}{9}
Divide both sides by 25.
x=-\frac{25}{9},y=\frac{475}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}