Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=300,15x+2y=3200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=300
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+300
Subtract y from both sides of the equation.
15\left(-y+300\right)+2y=3200
Substitute -y+300 for x in the other equation, 15x+2y=3200.
-15y+4500+2y=3200
Multiply 15 times -y+300.
-13y+4500=3200
Add -15y to 2y.
-13y=-1300
Subtract 4500 from both sides of the equation.
y=100
Divide both sides by -13.
x=-100+300
Substitute 100 for y in x=-y+300. Because the resulting equation contains only one variable, you can solve for x directly.
x=200
Add 300 to -100.
x=200,y=100
The system is now solved.
x+y=300,15x+2y=3200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\15&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\3200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\15&2\end{matrix}\right))\left(\begin{matrix}1&1\\15&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&2\end{matrix}\right))\left(\begin{matrix}300\\3200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\15&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&2\end{matrix}\right))\left(\begin{matrix}300\\3200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&2\end{matrix}\right))\left(\begin{matrix}300\\3200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-15}&-\frac{1}{2-15}\\-\frac{15}{2-15}&\frac{1}{2-15}\end{matrix}\right)\left(\begin{matrix}300\\3200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&\frac{1}{13}\\\frac{15}{13}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}300\\3200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\times 300+\frac{1}{13}\times 3200\\\frac{15}{13}\times 300-\frac{1}{13}\times 3200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\100\end{matrix}\right)
Do the arithmetic.
x=200,y=100
Extract the matrix elements x and y.
x+y=300,15x+2y=3200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
15x+15y=15\times 300,15x+2y=3200
To make x and 15x equal, multiply all terms on each side of the first equation by 15 and all terms on each side of the second by 1.
15x+15y=4500,15x+2y=3200
Simplify.
15x-15x+15y-2y=4500-3200
Subtract 15x+2y=3200 from 15x+15y=4500 by subtracting like terms on each side of the equal sign.
15y-2y=4500-3200
Add 15x to -15x. Terms 15x and -15x cancel out, leaving an equation with only one variable that can be solved.
13y=4500-3200
Add 15y to -2y.
13y=1300
Add 4500 to -3200.
y=100
Divide both sides by 13.
15x+2\times 100=3200
Substitute 100 for y in 15x+2y=3200. Because the resulting equation contains only one variable, you can solve for x directly.
15x+200=3200
Multiply 2 times 100.
15x=3000
Subtract 200 from both sides of the equation.
x=200
Divide both sides by 15.
x=200,y=100
The system is now solved.