\left\{ \begin{array} { l } { x + y = 28 } \\ { 2 \cdot 12 x = 184 } \end{array} \right.
Solve for x, y
x = \frac{23}{3} = 7\frac{2}{3} \approx 7.666666667
y = \frac{61}{3} = 20\frac{1}{3} \approx 20.333333333
Graph
Share
Copied to clipboard
24x=184
Consider the second equation. Multiply 2 and 12 to get 24.
x=\frac{184}{24}
Divide both sides by 24.
x=\frac{23}{3}
Reduce the fraction \frac{184}{24} to lowest terms by extracting and canceling out 8.
\frac{23}{3}+y=28
Consider the first equation. Insert the known values of variables into the equation.
y=28-\frac{23}{3}
Subtract \frac{23}{3} from both sides.
y=\frac{61}{3}
Subtract \frac{23}{3} from 28 to get \frac{61}{3}.
x=\frac{23}{3} y=\frac{61}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}