Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=250000,\frac{1}{600}x+\frac{1}{200}y=150
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=250000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+250000
Subtract y from both sides of the equation.
\frac{1}{600}\left(-y+250000\right)+\frac{1}{200}y=150
Substitute -y+250000 for x in the other equation, \frac{1}{600}x+\frac{1}{200}y=150.
-\frac{1}{600}y+\frac{1250}{3}+\frac{1}{200}y=150
Multiply \frac{1}{600} times -y+250000.
\frac{1}{300}y+\frac{1250}{3}=150
Add -\frac{y}{600} to \frac{y}{200}.
\frac{1}{300}y=-\frac{800}{3}
Subtract \frac{1250}{3} from both sides of the equation.
y=-80000
Multiply both sides by 300.
x=-\left(-80000\right)+250000
Substitute -80000 for y in x=-y+250000. Because the resulting equation contains only one variable, you can solve for x directly.
x=80000+250000
Multiply -1 times -80000.
x=330000
Add 250000 to 80000.
x=330000,y=-80000
The system is now solved.
x+y=250000,\frac{1}{600}x+\frac{1}{200}y=150
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}250000\\150\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right))\left(\begin{matrix}250000\\150\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right))\left(\begin{matrix}250000\\150\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right))\left(\begin{matrix}250000\\150\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{200}}{\frac{1}{200}-\frac{1}{600}}&-\frac{1}{\frac{1}{200}-\frac{1}{600}}\\-\frac{\frac{1}{600}}{\frac{1}{200}-\frac{1}{600}}&\frac{1}{\frac{1}{200}-\frac{1}{600}}\end{matrix}\right)\left(\begin{matrix}250000\\150\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-300\\-\frac{1}{2}&300\end{matrix}\right)\left(\begin{matrix}250000\\150\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 250000-300\times 150\\-\frac{1}{2}\times 250000+300\times 150\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}330000\\-80000\end{matrix}\right)
Do the arithmetic.
x=330000,y=-80000
Extract the matrix elements x and y.
x+y=250000,\frac{1}{600}x+\frac{1}{200}y=150
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{600}x+\frac{1}{600}y=\frac{1}{600}\times 250000,\frac{1}{600}x+\frac{1}{200}y=150
To make x and \frac{x}{600} equal, multiply all terms on each side of the first equation by \frac{1}{600} and all terms on each side of the second by 1.
\frac{1}{600}x+\frac{1}{600}y=\frac{1250}{3},\frac{1}{600}x+\frac{1}{200}y=150
Simplify.
\frac{1}{600}x-\frac{1}{600}x+\frac{1}{600}y-\frac{1}{200}y=\frac{1250}{3}-150
Subtract \frac{1}{600}x+\frac{1}{200}y=150 from \frac{1}{600}x+\frac{1}{600}y=\frac{1250}{3} by subtracting like terms on each side of the equal sign.
\frac{1}{600}y-\frac{1}{200}y=\frac{1250}{3}-150
Add \frac{x}{600} to -\frac{x}{600}. Terms \frac{x}{600} and -\frac{x}{600} cancel out, leaving an equation with only one variable that can be solved.
-\frac{1}{300}y=\frac{1250}{3}-150
Add \frac{y}{600} to -\frac{y}{200}.
-\frac{1}{300}y=\frac{800}{3}
Add \frac{1250}{3} to -150.
y=-80000
Multiply both sides by -300.
\frac{1}{600}x+\frac{1}{200}\left(-80000\right)=150
Substitute -80000 for y in \frac{1}{600}x+\frac{1}{200}y=150. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{1}{600}x-400=150
Multiply \frac{1}{200} times -80000.
\frac{1}{600}x=550
Add 400 to both sides of the equation.
x=330000
Multiply both sides by 600.
x=330000,y=-80000
The system is now solved.