Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=22,150x+200y=3400
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=22
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+22
Subtract y from both sides of the equation.
150\left(-y+22\right)+200y=3400
Substitute -y+22 for x in the other equation, 150x+200y=3400.
-150y+3300+200y=3400
Multiply 150 times -y+22.
50y+3300=3400
Add -150y to 200y.
50y=100
Subtract 3300 from both sides of the equation.
y=2
Divide both sides by 50.
x=-2+22
Substitute 2 for y in x=-y+22. Because the resulting equation contains only one variable, you can solve for x directly.
x=20
Add 22 to -2.
x=20,y=2
The system is now solved.
x+y=22,150x+200y=3400
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\150&200\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\3400\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\150&200\end{matrix}\right))\left(\begin{matrix}1&1\\150&200\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\150&200\end{matrix}\right))\left(\begin{matrix}22\\3400\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\150&200\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\150&200\end{matrix}\right))\left(\begin{matrix}22\\3400\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\150&200\end{matrix}\right))\left(\begin{matrix}22\\3400\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{200}{200-150}&-\frac{1}{200-150}\\-\frac{150}{200-150}&\frac{1}{200-150}\end{matrix}\right)\left(\begin{matrix}22\\3400\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-\frac{1}{50}\\-3&\frac{1}{50}\end{matrix}\right)\left(\begin{matrix}22\\3400\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 22-\frac{1}{50}\times 3400\\-3\times 22+\frac{1}{50}\times 3400\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\2\end{matrix}\right)
Do the arithmetic.
x=20,y=2
Extract the matrix elements x and y.
x+y=22,150x+200y=3400
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
150x+150y=150\times 22,150x+200y=3400
To make x and 150x equal, multiply all terms on each side of the first equation by 150 and all terms on each side of the second by 1.
150x+150y=3300,150x+200y=3400
Simplify.
150x-150x+150y-200y=3300-3400
Subtract 150x+200y=3400 from 150x+150y=3300 by subtracting like terms on each side of the equal sign.
150y-200y=3300-3400
Add 150x to -150x. Terms 150x and -150x cancel out, leaving an equation with only one variable that can be solved.
-50y=3300-3400
Add 150y to -200y.
-50y=-100
Add 3300 to -3400.
y=2
Divide both sides by -50.
150x+200\times 2=3400
Substitute 2 for y in 150x+200y=3400. Because the resulting equation contains only one variable, you can solve for x directly.
150x+400=3400
Multiply 200 times 2.
150x=3000
Subtract 400 from both sides of the equation.
x=20
Divide both sides by 150.
x=20,y=2
The system is now solved.