Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=200,87x+43y=15200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+200
Subtract y from both sides of the equation.
87\left(-y+200\right)+43y=15200
Substitute -y+200 for x in the other equation, 87x+43y=15200.
-87y+17400+43y=15200
Multiply 87 times -y+200.
-44y+17400=15200
Add -87y to 43y.
-44y=-2200
Subtract 17400 from both sides of the equation.
y=50
Divide both sides by -44.
x=-50+200
Substitute 50 for y in x=-y+200. Because the resulting equation contains only one variable, you can solve for x directly.
x=150
Add 200 to -50.
x=150,y=50
The system is now solved.
x+y=200,87x+43y=15200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\87&43\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\15200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\87&43\end{matrix}\right))\left(\begin{matrix}1&1\\87&43\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\87&43\end{matrix}\right))\left(\begin{matrix}200\\15200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\87&43\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\87&43\end{matrix}\right))\left(\begin{matrix}200\\15200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\87&43\end{matrix}\right))\left(\begin{matrix}200\\15200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{43}{43-87}&-\frac{1}{43-87}\\-\frac{87}{43-87}&\frac{1}{43-87}\end{matrix}\right)\left(\begin{matrix}200\\15200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{43}{44}&\frac{1}{44}\\\frac{87}{44}&-\frac{1}{44}\end{matrix}\right)\left(\begin{matrix}200\\15200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{43}{44}\times 200+\frac{1}{44}\times 15200\\\frac{87}{44}\times 200-\frac{1}{44}\times 15200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}150\\50\end{matrix}\right)
Do the arithmetic.
x=150,y=50
Extract the matrix elements x and y.
x+y=200,87x+43y=15200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
87x+87y=87\times 200,87x+43y=15200
To make x and 87x equal, multiply all terms on each side of the first equation by 87 and all terms on each side of the second by 1.
87x+87y=17400,87x+43y=15200
Simplify.
87x-87x+87y-43y=17400-15200
Subtract 87x+43y=15200 from 87x+87y=17400 by subtracting like terms on each side of the equal sign.
87y-43y=17400-15200
Add 87x to -87x. Terms 87x and -87x cancel out, leaving an equation with only one variable that can be solved.
44y=17400-15200
Add 87y to -43y.
44y=2200
Add 17400 to -15200.
y=50
Divide both sides by 44.
87x+43\times 50=15200
Substitute 50 for y in 87x+43y=15200. Because the resulting equation contains only one variable, you can solve for x directly.
87x+2150=15200
Multiply 43 times 50.
87x=13050
Subtract 2150 from both sides of the equation.
x=150
Divide both sides by 87.
x=150,y=50
The system is now solved.