Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+2y=1000,2x+3y=1750
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=1000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-2y+1000
Subtract 2y from both sides of the equation.
2\left(-2y+1000\right)+3y=1750
Substitute -2y+1000 for x in the other equation, 2x+3y=1750.
-4y+2000+3y=1750
Multiply 2 times -2y+1000.
-y+2000=1750
Add -4y to 3y.
-y=-250
Subtract 2000 from both sides of the equation.
y=250
Divide both sides by -1.
x=-2\times 250+1000
Substitute 250 for y in x=-2y+1000. Because the resulting equation contains only one variable, you can solve for x directly.
x=-500+1000
Multiply -2 times 250.
x=500
Add 1000 to -500.
x=500,y=250
The system is now solved.
x+2y=1000,2x+3y=1750
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1000\\1750\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1000\\1750\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&2\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1000\\1750\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1000\\1750\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 2}&-\frac{2}{3-2\times 2}\\-\frac{2}{3-2\times 2}&\frac{1}{3-2\times 2}\end{matrix}\right)\left(\begin{matrix}1000\\1750\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}1000\\1750\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 1000+2\times 1750\\2\times 1000-1750\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\250\end{matrix}\right)
Do the arithmetic.
x=500,y=250
Extract the matrix elements x and y.
x+2y=1000,2x+3y=1750
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+2\times 2y=2\times 1000,2x+3y=1750
To make x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2x+4y=2000,2x+3y=1750
Simplify.
2x-2x+4y-3y=2000-1750
Subtract 2x+3y=1750 from 2x+4y=2000 by subtracting like terms on each side of the equal sign.
4y-3y=2000-1750
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
y=2000-1750
Add 4y to -3y.
y=250
Add 2000 to -1750.
2x+3\times 250=1750
Substitute 250 for y in 2x+3y=1750. Because the resulting equation contains only one variable, you can solve for x directly.
2x+750=1750
Multiply 3 times 250.
2x=1000
Subtract 750 from both sides of the equation.
x=500
Divide both sides by 2.
x=500,y=250
The system is now solved.