\left\{ \begin{array} { l } { x + 2 y + 62 = 05 \quad ( 1 ) } \\ { - x + y - 2 z = 3 } \\ { x - 4 y - 2 z = 1 } \end{array} \right.
Solve for x, y, z
x = -\frac{289}{9} = -32\frac{1}{9} \approx -32.111111111
y = -\frac{112}{9} = -12\frac{4}{9} \approx -12.444444444
z = \frac{25}{3} = 8\frac{1}{3} \approx 8.333333333
Share
Copied to clipboard
x=-2y-57
Solve x+2y+62=5\times 1 for x.
-\left(-2y-57\right)+y-2z=3 -2y-57-4y-2z=1
Substitute -2y-57 for x in the second and third equation.
y=-18+\frac{2}{3}z z=-29-3y
Solve these equations for y and z respectively.
z=-29-3\left(-18+\frac{2}{3}z\right)
Substitute -18+\frac{2}{3}z for y in the equation z=-29-3y.
z=\frac{25}{3}
Solve z=-29-3\left(-18+\frac{2}{3}z\right) for z.
y=-18+\frac{2}{3}\times \frac{25}{3}
Substitute \frac{25}{3} for z in the equation y=-18+\frac{2}{3}z.
y=-\frac{112}{9}
Calculate y from y=-18+\frac{2}{3}\times \frac{25}{3}.
x=-2\left(-\frac{112}{9}\right)-57
Substitute -\frac{112}{9} for y in the equation x=-2y-57.
x=-\frac{289}{9}
Calculate x from x=-2\left(-\frac{112}{9}\right)-57.
x=-\frac{289}{9} y=-\frac{112}{9} z=\frac{25}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}