\left\{ \begin{array} { l } { x + \frac { 5 \cdot y - 1 } { 3 } = - \frac { 2 } { 3 } } \\ { \frac { 2 \cdot x + 3 } { 2 } - 3 \cdot y = 10,5 } \end{array} \right.
Solve for x, y
x=3
y=-2
Graph
Share
Copied to clipboard
x+\frac{1}{3}\left(5y-1\right)=-\frac{2}{3};\frac{1}{2}\left(2x+3\right)-3y=10,5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+\frac{1}{3}\left(5y-1\right)=-\frac{2}{3}
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x+\frac{5}{3}y-\frac{1}{3}=-\frac{2}{3}
Multiply \frac{1}{3} times 5y-1.
x+\frac{5}{3}y=-\frac{1}{3}
Add \frac{1}{3} to both sides of the equation.
x=-\frac{5}{3}y-\frac{1}{3}
Subtract \frac{5y}{3} from both sides of the equation.
\frac{1}{2}\left(2\left(-\frac{5}{3}y-\frac{1}{3}\right)+3\right)-3y=10,5
Substitute \frac{-5y-1}{3} for x in the other equation, \frac{1}{2}\left(2x+3\right)-3y=10,5.
\frac{1}{2}\left(-\frac{10}{3}y-\frac{2}{3}+3\right)-3y=10,5
Multiply 2 times \frac{-5y-1}{3}.
\frac{1}{2}\left(-\frac{10}{3}y+\frac{7}{3}\right)-3y=10,5
Add -\frac{2}{3} to 3.
-\frac{5}{3}y+\frac{7}{6}-3y=10,5
Multiply \frac{1}{2} times \frac{-10y+7}{3}.
-\frac{14}{3}y+\frac{7}{6}=10,5
Add -\frac{5y}{3} to -3y.
-\frac{14}{3}y=\frac{28}{3}
Subtract \frac{7}{6} from both sides of the equation.
y=-2
Divide both sides of the equation by -\frac{14}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{3}\left(-2\right)-\frac{1}{3}
Substitute -2 for y in x=-\frac{5}{3}y-\frac{1}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{10-1}{3}
Multiply -\frac{5}{3} times -2.
x=3
Add -\frac{1}{3} to \frac{10}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=3;y=-2
The system is now solved.
x+\frac{1}{3}\left(5y-1\right)=-\frac{2}{3};\frac{1}{2}\left(2x+3\right)-3y=10,5
Put the equations in standard form and then use matrices to solve the system of equations.
x+\frac{1}{3}\left(5y-1\right)=-\frac{2}{3}
Simplify the first equation to put it in standard form.
x+\frac{5}{3}y-\frac{1}{3}=-\frac{2}{3}
Multiply \frac{1}{3} times 5y-1.
x+\frac{5}{3}y=-\frac{1}{3}
Add \frac{1}{3} to both sides of the equation.
\frac{1}{2}\left(2x+3\right)-3y=10,5
Simplify the second equation to put it in standard form.
x+\frac{3}{2}-3y=10,5
Multiply \frac{1}{2} times 2x+3.
x-3y=9
Subtract \frac{3}{2} from both sides of the equation.
\left(\begin{matrix}1&\frac{5}{3}\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\\9\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&\frac{5}{3}\\1&-3\end{matrix}\right))\left(\begin{matrix}1&\frac{5}{3}\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{5}{3}\\1&-3\end{matrix}\right))\left(\begin{matrix}-\frac{1}{3}\\9\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&\frac{5}{3}\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{5}{3}\\1&-3\end{matrix}\right))\left(\begin{matrix}-\frac{1}{3}\\9\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{5}{3}\\1&-3\end{matrix}\right))\left(\begin{matrix}-\frac{1}{3}\\9\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\frac{5}{3}}&-\frac{\frac{5}{3}}{-3-\frac{5}{3}}\\-\frac{1}{-3-\frac{5}{3}}&\frac{1}{-3-\frac{5}{3}}\end{matrix}\right)\left(\begin{matrix}-\frac{1}{3}\\9\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{14}&\frac{5}{14}\\\frac{3}{14}&-\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-\frac{1}{3}\\9\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{14}\left(-\frac{1}{3}\right)+\frac{5}{14}\times 9\\\frac{3}{14}\left(-\frac{1}{3}\right)-\frac{3}{14}\times 9\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Do the arithmetic.
x=3;y=-2
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}