\left\{ \begin{array} { l } { n - m = 2 } \\ { m ^ { 2 } + n ^ { 2 } = 8 } \end{array} \right.
Solve for n, m
n=1-\sqrt{3}\approx -0.732050808\text{, }m=-\left(\sqrt{3}+1\right)\approx -2.732050808
n=\sqrt{3}+1\approx 2.732050808\text{, }m=\sqrt{3}-1\approx 0.732050808
Share
Copied to clipboard
n-m=2,m^{2}+n^{2}=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
n-m=2
Solve n-m=2 for n by isolating n on the left hand side of the equal sign.
n=m+2
Subtract -m from both sides of the equation.
m^{2}+\left(m+2\right)^{2}=8
Substitute m+2 for n in the other equation, m^{2}+n^{2}=8.
m^{2}+m^{2}+4m+4=8
Square m+2.
2m^{2}+4m+4=8
Add m^{2} to m^{2}.
2m^{2}+4m-4=0
Subtract 8 from both sides of the equation.
m=\frac{-4±\sqrt{4^{2}-4\times 2\left(-4\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 2\times 1\times 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-4±\sqrt{16-4\times 2\left(-4\right)}}{2\times 2}
Square 1\times 2\times 1\times 2.
m=\frac{-4±\sqrt{16-8\left(-4\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
m=\frac{-4±\sqrt{16+32}}{2\times 2}
Multiply -8 times -4.
m=\frac{-4±\sqrt{48}}{2\times 2}
Add 16 to 32.
m=\frac{-4±4\sqrt{3}}{2\times 2}
Take the square root of 48.
m=\frac{-4±4\sqrt{3}}{4}
Multiply 2 times 1+1\times 1^{2}.
m=\frac{4\sqrt{3}-4}{4}
Now solve the equation m=\frac{-4±4\sqrt{3}}{4} when ± is plus. Add -4 to 4\sqrt{3}.
m=\sqrt{3}-1
Divide -4+4\sqrt{3} by 4.
m=\frac{-4\sqrt{3}-4}{4}
Now solve the equation m=\frac{-4±4\sqrt{3}}{4} when ± is minus. Subtract 4\sqrt{3} from -4.
m=-\sqrt{3}-1
Divide -4-4\sqrt{3} by 4.
n=\sqrt{3}-1+2
There are two solutions for m: -1+\sqrt{3} and -1-\sqrt{3}. Substitute -1+\sqrt{3} for m in the equation n=m+2 to find the corresponding solution for n that satisfies both equations.
n=\sqrt{3}+1
Add 1\left(-1+\sqrt{3}\right) to 2.
n=-\sqrt{3}-1+2
Now substitute -1-\sqrt{3} for m in the equation n=m+2 and solve to find the corresponding solution for n that satisfies both equations.
n=1-\sqrt{3}
Add 1\left(-1-\sqrt{3}\right) to 2.
n=\sqrt{3}+1,m=\sqrt{3}-1\text{ or }n=1-\sqrt{3},m=-\sqrt{3}-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}