Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

kx-y+k=0,\frac{1}{3}y^{2}+\frac{1}{4}x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
kx-y+k=0
Solve kx-y+k=0 for x by isolating x on the left hand side of the equal sign.
kx-y=-k
Subtract k from both sides of the equation.
kx=y-k
Subtract -y from both sides of the equation.
x=\frac{1}{k}y-1
Divide both sides by k.
\frac{1}{3}y^{2}+\frac{1}{4}\left(\frac{1}{k}y-1\right)^{2}=1
Substitute \frac{1}{k}y-1 for x in the other equation, \frac{1}{3}y^{2}+\frac{1}{4}x^{2}=1.
\frac{1}{3}y^{2}+\frac{1}{4}\left(\left(\frac{1}{k}\right)^{2}y^{2}+\left(-2\times \frac{1}{k}\right)y+1\right)=1
Square \frac{1}{k}y-1.
\frac{1}{3}y^{2}+\frac{\left(\frac{1}{k}\right)^{2}}{4}y^{2}+\left(-\frac{2\times \frac{1}{k}}{4}\right)y+\frac{1}{4}=1
Multiply \frac{1}{4} times \left(\frac{1}{k}\right)^{2}y^{2}+\left(-2\times \frac{1}{k}\right)y+1.
\left(\frac{1}{3}+\frac{\left(\frac{1}{k}\right)^{2}}{4}\right)y^{2}+\left(-\frac{2\times \frac{1}{k}}{4}\right)y+\frac{1}{4}=1
Add \frac{1}{3}y^{2} to \frac{\left(\frac{1}{k}\right)^{2}}{4}y^{2}.
\left(\frac{1}{3}+\frac{\left(\frac{1}{k}\right)^{2}}{4}\right)y^{2}+\left(-\frac{2\times \frac{1}{k}}{4}\right)y-\frac{3}{4}=0
Subtract 1 from both sides of the equation.
y=\frac{-\left(-\frac{2\times \frac{1}{k}}{4}\right)±\sqrt{\left(-\frac{2\times \frac{1}{k}}{4}\right)^{2}-4\left(\frac{1}{3}+\frac{\left(\frac{1}{k}\right)^{2}}{4}\right)\left(-\frac{3}{4}\right)}}{2\left(\frac{1}{3}+\frac{\left(\frac{1}{k}\right)^{2}}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3}+\frac{1}{4}\times \left(\frac{1}{k}\right)^{2} for a, \frac{1}{4}\left(-1\right)\times 2\times \frac{1}{k} for b, and -\frac{3}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{2\times \frac{1}{k}}{4}\right)±\sqrt{\frac{1}{4k^{2}}-4\left(\frac{1}{3}+\frac{\left(\frac{1}{k}\right)^{2}}{4}\right)\left(-\frac{3}{4}\right)}}{2\left(\frac{1}{3}+\frac{\left(\frac{1}{k}\right)^{2}}{4}\right)}
Square \frac{1}{4}\left(-1\right)\times 2\times \frac{1}{k}.
y=\frac{-\left(-\frac{2\times \frac{1}{k}}{4}\right)±\sqrt{\frac{1}{4k^{2}}+\left(-\frac{4}{3}-\frac{1}{k^{2}}\right)\left(-\frac{3}{4}\right)}}{2\left(\frac{1}{3}+\frac{\left(\frac{1}{k}\right)^{2}}{4}\right)}
Multiply -4 times \frac{1}{3}+\frac{1}{4}\times \left(\frac{1}{k}\right)^{2}.
y=\frac{-\left(-\frac{2\times \frac{1}{k}}{4}\right)±\sqrt{\frac{1}{4k^{2}}+1+\frac{3}{4k^{2}}}}{2\left(\frac{1}{3}+\frac{\left(\frac{1}{k}\right)^{2}}{4}\right)}
Multiply -\frac{4}{3}-\frac{1}{k^{2}} times -\frac{3}{4}.
y=\frac{-\left(-\frac{2\times \frac{1}{k}}{4}\right)±\sqrt{1+\frac{1}{k^{2}}}}{2\left(\frac{1}{3}+\frac{\left(\frac{1}{k}\right)^{2}}{4}\right)}
Add \frac{1}{4k^{2}} to \frac{3}{4k^{2}}+1.
y=\frac{-\left(-\frac{2\times \frac{1}{k}}{4}\right)±\frac{\sqrt{k^{2}+1}}{|k|}}{2\left(\frac{1}{3}+\frac{\left(\frac{1}{k}\right)^{2}}{4}\right)}
Take the square root of \frac{1}{k^{2}}+1.
y=\frac{\frac{1}{2k}±\frac{\sqrt{k^{2}+1}}{|k|}}{\frac{2}{3}+\frac{1}{2k^{2}}}
Multiply 2 times \frac{1}{3}+\frac{1}{4}\times \left(\frac{1}{k}\right)^{2}.
y=\frac{\frac{\sqrt{k^{2}+1}}{|k|}+\frac{1}{2k}}{\frac{2}{3}+\frac{1}{2k^{2}}}
Now solve the equation y=\frac{\frac{1}{2k}±\frac{\sqrt{k^{2}+1}}{|k|}}{\frac{2}{3}+\frac{1}{2k^{2}}} when ± is plus. Add \frac{1}{2k} to \frac{\sqrt{k^{2}+1}}{|k|}.
y=\frac{3k\left(2k\sqrt{k^{2}+1}+|k|\right)}{|k|\left(4k^{2}+3\right)}
Divide \frac{1}{2k}+\frac{\sqrt{k^{2}+1}}{|k|} by \frac{2}{3}+\frac{1}{2k^{2}}.
y=\frac{-\frac{\sqrt{k^{2}+1}}{|k|}+\frac{1}{2k}}{\frac{2}{3}+\frac{1}{2k^{2}}}
Now solve the equation y=\frac{\frac{1}{2k}±\frac{\sqrt{k^{2}+1}}{|k|}}{\frac{2}{3}+\frac{1}{2k^{2}}} when ± is minus. Subtract \frac{\sqrt{k^{2}+1}}{|k|} from \frac{1}{2k}.
y=\frac{3k\left(-2k\sqrt{k^{2}+1}+|k|\right)}{|k|\left(4k^{2}+3\right)}
Divide \frac{1}{2k}-\frac{\sqrt{k^{2}+1}}{|k|} by \frac{2}{3}+\frac{1}{2k^{2}}.
x=\frac{1}{k}\times \frac{3k\left(2k\sqrt{k^{2}+1}+|k|\right)}{|k|\left(4k^{2}+3\right)}-1
There are two solutions for y: \frac{3k\left(|k|+2\sqrt{k^{2}+1}k\right)}{\left(3+4k^{2}\right)|k|} and \frac{3\left(|k|-2\sqrt{k^{2}+1}k\right)k}{|k|\left(3+4k^{2}\right)}. Substitute \frac{3k\left(|k|+2\sqrt{k^{2}+1}k\right)}{\left(3+4k^{2}\right)|k|} for y in the equation x=\frac{1}{k}y-1 to find the corresponding solution for x that satisfies both equations.
x=-1+\frac{1}{k}\times \frac{3k\left(2k\sqrt{k^{2}+1}+|k|\right)}{|k|\left(4k^{2}+3\right)}
Add \frac{1}{k}\times \frac{3k\left(|k|+2\sqrt{k^{2}+1}k\right)}{\left(3+4k^{2}\right)|k|} to -1.
x=\frac{1}{k}\times \frac{3k\left(-2k\sqrt{k^{2}+1}+|k|\right)}{|k|\left(4k^{2}+3\right)}-1
Now substitute \frac{3\left(|k|-2\sqrt{k^{2}+1}k\right)k}{|k|\left(3+4k^{2}\right)} for y in the equation x=\frac{1}{k}y-1 and solve to find the corresponding solution for x that satisfies both equations.
x=-1+\frac{1}{k}\times \frac{3k\left(-2k\sqrt{k^{2}+1}+|k|\right)}{|k|\left(4k^{2}+3\right)}
Add \frac{1}{k}\times \frac{3\left(|k|-2\sqrt{k^{2}+1}k\right)k}{|k|\left(3+4k^{2}\right)} to -1.
x=-1+\frac{1}{k}\times \frac{3k\left(2k\sqrt{k^{2}+1}+|k|\right)}{|k|\left(4k^{2}+3\right)},y=\frac{3k\left(2k\sqrt{k^{2}+1}+|k|\right)}{|k|\left(4k^{2}+3\right)}\text{ or }x=-1+\frac{1}{k}\times \frac{3k\left(-2k\sqrt{k^{2}+1}+|k|\right)}{|k|\left(4k^{2}+3\right)},y=\frac{3k\left(-2k\sqrt{k^{2}+1}+|k|\right)}{|k|\left(4k^{2}+3\right)}
The system is now solved.