\left\{ \begin{array} { l } { b = - 2 a } \\ { - 22 a + 20 = 0 } \\ { c = 10 a - 25 } \end{array} \right.
Solve for b, a, c
b = -\frac{20}{11} = -1\frac{9}{11} \approx -1.818181818
a=\frac{10}{11}\approx 0.909090909
c = -\frac{175}{11} = -15\frac{10}{11} \approx -15.909090909
Share
Copied to clipboard
-22a=-20
Consider the second equation. Subtract 20 from both sides. Anything subtracted from zero gives its negation.
a=\frac{-20}{-22}
Divide both sides by -22.
a=\frac{10}{11}
Reduce the fraction \frac{-20}{-22} to lowest terms by extracting and canceling out -2.
c=10\times \frac{10}{11}-25
Consider the third equation. Insert the known values of variables into the equation.
c=\frac{100}{11}-25
Multiply 10 and \frac{10}{11} to get \frac{100}{11}.
c=-\frac{175}{11}
Subtract 25 from \frac{100}{11} to get -\frac{175}{11}.
b=-2\times \frac{10}{11}
Consider the first equation. Insert the known values of variables into the equation.
b=-\frac{20}{11}
Multiply -2 and \frac{10}{11} to get -\frac{20}{11}.
b=-\frac{20}{11} a=\frac{10}{11} c=-\frac{175}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}