\left\{ \begin{array} { l } { a + b = 130 } \\ { - 1.85 a + 1.4 b = 74 } \end{array} \right.
Solve for a, b
a = \frac{432}{13} = 33\frac{3}{13} \approx 33.230769231
b = \frac{1258}{13} = 96\frac{10}{13} \approx 96.769230769
Share
Copied to clipboard
a+b=130,-1.85a+1.4b=74
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a+b=130
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
a=-b+130
Subtract b from both sides of the equation.
-1.85\left(-b+130\right)+1.4b=74
Substitute -b+130 for a in the other equation, -1.85a+1.4b=74.
1.85b-240.5+1.4b=74
Multiply -1.85 times -b+130.
3.25b-240.5=74
Add \frac{37b}{20} to \frac{7b}{5}.
3.25b=314.5
Add 240.5 to both sides of the equation.
b=\frac{1258}{13}
Divide both sides of the equation by 3.25, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{1258}{13}+130
Substitute \frac{1258}{13} for b in a=-b+130. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{432}{13}
Add 130 to -\frac{1258}{13}.
a=\frac{432}{13},b=\frac{1258}{13}
The system is now solved.
a+b=130,-1.85a+1.4b=74
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\-1.85&1.4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}130\\74\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\-1.85&1.4\end{matrix}\right))\left(\begin{matrix}1&1\\-1.85&1.4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1.85&1.4\end{matrix}\right))\left(\begin{matrix}130\\74\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\-1.85&1.4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1.85&1.4\end{matrix}\right))\left(\begin{matrix}130\\74\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1.85&1.4\end{matrix}\right))\left(\begin{matrix}130\\74\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1.4}{1.4-\left(-1.85\right)}&-\frac{1}{1.4-\left(-1.85\right)}\\-\frac{-1.85}{1.4-\left(-1.85\right)}&\frac{1}{1.4-\left(-1.85\right)}\end{matrix}\right)\left(\begin{matrix}130\\74\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{28}{65}&-\frac{4}{13}\\\frac{37}{65}&\frac{4}{13}\end{matrix}\right)\left(\begin{matrix}130\\74\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{28}{65}\times 130-\frac{4}{13}\times 74\\\frac{37}{65}\times 130+\frac{4}{13}\times 74\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{432}{13}\\\frac{1258}{13}\end{matrix}\right)
Do the arithmetic.
a=\frac{432}{13},b=\frac{1258}{13}
Extract the matrix elements a and b.
a+b=130,-1.85a+1.4b=74
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-1.85a-1.85b=-1.85\times 130,-1.85a+1.4b=74
To make a and -\frac{37a}{20} equal, multiply all terms on each side of the first equation by -1.85 and all terms on each side of the second by 1.
-1.85a-1.85b=-240.5,-1.85a+1.4b=74
Simplify.
-1.85a+1.85a-1.85b-1.4b=-240.5-74
Subtract -1.85a+1.4b=74 from -1.85a-1.85b=-240.5 by subtracting like terms on each side of the equal sign.
-1.85b-1.4b=-240.5-74
Add -\frac{37a}{20} to \frac{37a}{20}. Terms -\frac{37a}{20} and \frac{37a}{20} cancel out, leaving an equation with only one variable that can be solved.
-3.25b=-240.5-74
Add -\frac{37b}{20} to -\frac{7b}{5}.
-3.25b=-314.5
Add -240.5 to -74.
b=\frac{1258}{13}
Divide both sides of the equation by -3.25, which is the same as multiplying both sides by the reciprocal of the fraction.
-1.85a+1.4\times \frac{1258}{13}=74
Substitute \frac{1258}{13} for b in -1.85a+1.4b=74. Because the resulting equation contains only one variable, you can solve for a directly.
-1.85a+\frac{8806}{65}=74
Multiply 1.4 times \frac{1258}{13} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-1.85a=-\frac{3996}{65}
Subtract \frac{8806}{65} from both sides of the equation.
a=\frac{432}{13}
Divide both sides of the equation by -1.85, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{432}{13},b=\frac{1258}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}