\left\{ \begin{array} { l } { a + b = 1 } \\ { a ^ { 2 } + b ^ { 2 } = 1 } \end{array} \right.
Solve for a, b
a=0\text{, }b=1
a=1\text{, }b=0
Share
Copied to clipboard
a+b=1,b^{2}+a^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a+b=1
Solve a+b=1 for a by isolating a on the left hand side of the equal sign.
a=-b+1
Subtract b from both sides of the equation.
b^{2}+\left(-b+1\right)^{2}=1
Substitute -b+1 for a in the other equation, b^{2}+a^{2}=1.
b^{2}+b^{2}-2b+1=1
Square -b+1.
2b^{2}-2b+1=1
Add b^{2} to b^{2}.
2b^{2}-2b=0
Subtract 1 from both sides of the equation.
b=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 1\left(-1\right)\times 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-2\right)±2}{2\times 2}
Take the square root of \left(-2\right)^{2}.
b=\frac{2±2}{2\times 2}
The opposite of 1\times 1\left(-1\right)\times 2 is 2.
b=\frac{2±2}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
b=\frac{4}{4}
Now solve the equation b=\frac{2±2}{4} when ± is plus. Add 2 to 2.
b=1
Divide 4 by 4.
b=\frac{0}{4}
Now solve the equation b=\frac{2±2}{4} when ± is minus. Subtract 2 from 2.
b=0
Divide 0 by 4.
a=-1+1
There are two solutions for b: 1 and 0. Substitute 1 for b in the equation a=-b+1 to find the corresponding solution for a that satisfies both equations.
a=0
Add -1 to 1.
a=1
Now substitute 0 for b in the equation a=-b+1 and solve to find the corresponding solution for a that satisfies both equations.
a=0,b=1\text{ or }a=1,b=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}