\left\{ \begin{array} { l } { a + 2 b + 3 c = 1 } \\ { 2 a + 2 b + 5 c = 0 } \\ { 3 a + 5 b + c = 0 } \end{array} \right.
Solve for a, b, c
a = -\frac{23}{15} = -1\frac{8}{15} \approx -1.533333333
b=\frac{13}{15}\approx 0.866666667
c=\frac{4}{15}\approx 0.266666667
Share
Copied to clipboard
a=-2b-3c+1
Solve a+2b+3c=1 for a.
2\left(-2b-3c+1\right)+2b+5c=0 3\left(-2b-3c+1\right)+5b+c=0
Substitute -2b-3c+1 for a in the second and third equation.
b=-\frac{1}{2}c+1 c=-\frac{1}{8}b+\frac{3}{8}
Solve these equations for b and c respectively.
c=-\frac{1}{8}\left(-\frac{1}{2}c+1\right)+\frac{3}{8}
Substitute -\frac{1}{2}c+1 for b in the equation c=-\frac{1}{8}b+\frac{3}{8}.
c=\frac{4}{15}
Solve c=-\frac{1}{8}\left(-\frac{1}{2}c+1\right)+\frac{3}{8} for c.
b=-\frac{1}{2}\times \frac{4}{15}+1
Substitute \frac{4}{15} for c in the equation b=-\frac{1}{2}c+1.
b=\frac{13}{15}
Calculate b from b=-\frac{1}{2}\times \frac{4}{15}+1.
a=-2\times \frac{13}{15}-3\times \frac{4}{15}+1
Substitute \frac{13}{15} for b and \frac{4}{15} for c in the equation a=-2b-3c+1.
a=-\frac{23}{15}
Calculate a from a=-2\times \frac{13}{15}-3\times \frac{4}{15}+1.
a=-\frac{23}{15} b=\frac{13}{15} c=\frac{4}{15}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}