Skip to main content
Solve for I_1, I_2, I_3
Tick mark Image

Similar Problems from Web Search

Share

I_{1}=I_{2}+I_{3}
Solve I_{1}-I_{2}-I_{3}=0 for I_{1}.
100\left(I_{2}+I_{3}\right)-1168I_{3}=74,06
Substitute I_{2}+I_{3} for I_{1} in the equation 100I_{1}-1168I_{3}=74,06.
I_{2}=\frac{267}{25}I_{3}+\frac{3703}{5000} I_{3}=\frac{155}{1168}I_{2}-\frac{703}{58400}
Solve the second equation for I_{2} and the third equation for I_{3}.
I_{3}=\frac{155}{1168}\left(\frac{267}{25}I_{3}+\frac{3703}{5000}\right)-\frac{703}{58400}
Substitute \frac{267}{25}I_{3}+\frac{3703}{5000} for I_{2} in the equation I_{3}=\frac{155}{1168}I_{2}-\frac{703}{58400}.
I_{3}=-\frac{100733}{487400}
Solve I_{3}=\frac{155}{1168}\left(\frac{267}{25}I_{3}+\frac{3703}{5000}\right)-\frac{703}{58400} for I_{3}.
I_{2}=\frac{267}{25}\left(-\frac{100733}{487400}\right)+\frac{3703}{5000}
Substitute -\frac{100733}{487400} for I_{3} in the equation I_{2}=\frac{267}{25}I_{3}+\frac{3703}{5000}.
I_{2}=-\frac{35743}{24370}
Calculate I_{2} from I_{2}=\frac{267}{25}\left(-\frac{100733}{487400}\right)+\frac{3703}{5000}.
I_{1}=-\frac{35743}{24370}-\frac{100733}{487400}
Substitute -\frac{35743}{24370} for I_{2} and -\frac{100733}{487400} for I_{3} in the equation I_{1}=I_{2}+I_{3}.
I_{1}=-\frac{815593}{487400}
Calculate I_{1} from I_{1}=-\frac{35743}{24370}-\frac{100733}{487400}.
I_{1}=-\frac{815593}{487400} I_{2}=-\frac{35743}{24370} I_{3}=-\frac{100733}{487400}
The system is now solved.