Skip to main content
Solve for I_1, I_2, I_3
Tick mark Image

Similar Problems from Web Search

Share

I_{1}=-I_{2}-I_{3}
Solve I_{1}+I_{2}+I_{3}=0 for I_{1}.
10\left(-I_{2}-I_{3}\right)-7,5I_{2}=130-125
Substitute -I_{2}-I_{3} for I_{1} in the equation 10I_{1}-7,5I_{2}=130-125.
I_{2}=-\frac{2}{7}-\frac{4}{7}I_{3} I_{3}=-\frac{15}{2}+\frac{3}{4}I_{2}
Solve the second equation for I_{2} and the third equation for I_{3}.
I_{3}=-\frac{15}{2}+\frac{3}{4}\left(-\frac{2}{7}-\frac{4}{7}I_{3}\right)
Substitute -\frac{2}{7}-\frac{4}{7}I_{3} for I_{2} in the equation I_{3}=-\frac{15}{2}+\frac{3}{4}I_{2}.
I_{3}=-\frac{27}{5}
Solve I_{3}=-\frac{15}{2}+\frac{3}{4}\left(-\frac{2}{7}-\frac{4}{7}I_{3}\right) for I_{3}.
I_{2}=-\frac{2}{7}-\frac{4}{7}\left(-\frac{27}{5}\right)
Substitute -\frac{27}{5} for I_{3} in the equation I_{2}=-\frac{2}{7}-\frac{4}{7}I_{3}.
I_{2}=\frac{14}{5}
Calculate I_{2} from I_{2}=-\frac{2}{7}-\frac{4}{7}\left(-\frac{27}{5}\right).
I_{1}=-\frac{14}{5}-\left(-\frac{27}{5}\right)
Substitute \frac{14}{5} for I_{2} and -\frac{27}{5} for I_{3} in the equation I_{1}=-I_{2}-I_{3}.
I_{1}=\frac{13}{5}
Calculate I_{1} from I_{1}=-\frac{14}{5}-\left(-\frac{27}{5}\right).
I_{1}=\frac{13}{5} I_{2}=\frac{14}{5} I_{3}=-\frac{27}{5}
The system is now solved.