\left\{ \begin{array} { l } { 99 ( 6 a + 6 ) = 22 } \\ { 99 ( 2 a + b ) = 24 } \end{array} \right.
Solve for a, b
a=-\frac{26}{27}\approx -0.962962963
b = \frac{644}{297} = 2\frac{50}{297} \approx 2.168350168
Share
Copied to clipboard
6a+6=\frac{22}{99}
Consider the first equation. Divide both sides by 99.
6a+6=\frac{2}{9}
Reduce the fraction \frac{22}{99} to lowest terms by extracting and canceling out 11.
6a=\frac{2}{9}-6
Subtract 6 from both sides.
6a=-\frac{52}{9}
Subtract 6 from \frac{2}{9} to get -\frac{52}{9}.
a=\frac{-\frac{52}{9}}{6}
Divide both sides by 6.
a=\frac{-52}{9\times 6}
Express \frac{-\frac{52}{9}}{6} as a single fraction.
a=\frac{-52}{54}
Multiply 9 and 6 to get 54.
a=-\frac{26}{27}
Reduce the fraction \frac{-52}{54} to lowest terms by extracting and canceling out 2.
99\left(2\left(-\frac{26}{27}\right)+b\right)=24
Consider the second equation. Insert the known values of variables into the equation.
2\left(-\frac{26}{27}\right)+b=\frac{24}{99}
Divide both sides by 99.
2\left(-\frac{26}{27}\right)+b=\frac{8}{33}
Reduce the fraction \frac{24}{99} to lowest terms by extracting and canceling out 3.
-\frac{52}{27}+b=\frac{8}{33}
Multiply 2 and -\frac{26}{27} to get -\frac{52}{27}.
b=\frac{8}{33}+\frac{52}{27}
Add \frac{52}{27} to both sides.
b=\frac{644}{297}
Add \frac{8}{33} and \frac{52}{27} to get \frac{644}{297}.
a=-\frac{26}{27} b=\frac{644}{297}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}