\left\{ \begin{array} { l } { 85 a + 90 b = 20800 } \\ { 75 ( a + b ) = 18000 } \end{array} \right.
Solve for a, b
a=160
b=80
Share
Copied to clipboard
a+b=\frac{18000}{75}
Consider the second equation. Divide both sides by 75.
a+b=240
Divide 18000 by 75 to get 240.
85a+90b=20800,a+b=240
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
85a+90b=20800
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
85a=-90b+20800
Subtract 90b from both sides of the equation.
a=\frac{1}{85}\left(-90b+20800\right)
Divide both sides by 85.
a=-\frac{18}{17}b+\frac{4160}{17}
Multiply \frac{1}{85} times -90b+20800.
-\frac{18}{17}b+\frac{4160}{17}+b=240
Substitute \frac{-18b+4160}{17} for a in the other equation, a+b=240.
-\frac{1}{17}b+\frac{4160}{17}=240
Add -\frac{18b}{17} to b.
-\frac{1}{17}b=-\frac{80}{17}
Subtract \frac{4160}{17} from both sides of the equation.
b=80
Multiply both sides by -17.
a=-\frac{18}{17}\times 80+\frac{4160}{17}
Substitute 80 for b in a=-\frac{18}{17}b+\frac{4160}{17}. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{-1440+4160}{17}
Multiply -\frac{18}{17} times 80.
a=160
Add \frac{4160}{17} to -\frac{1440}{17} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=160,b=80
The system is now solved.
a+b=\frac{18000}{75}
Consider the second equation. Divide both sides by 75.
a+b=240
Divide 18000 by 75 to get 240.
85a+90b=20800,a+b=240
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}85&90\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}20800\\240\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}85&90\\1&1\end{matrix}\right))\left(\begin{matrix}85&90\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}85&90\\1&1\end{matrix}\right))\left(\begin{matrix}20800\\240\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}85&90\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}85&90\\1&1\end{matrix}\right))\left(\begin{matrix}20800\\240\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}85&90\\1&1\end{matrix}\right))\left(\begin{matrix}20800\\240\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{85-90}&-\frac{90}{85-90}\\-\frac{1}{85-90}&\frac{85}{85-90}\end{matrix}\right)\left(\begin{matrix}20800\\240\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&18\\\frac{1}{5}&-17\end{matrix}\right)\left(\begin{matrix}20800\\240\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 20800+18\times 240\\\frac{1}{5}\times 20800-17\times 240\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}160\\80\end{matrix}\right)
Do the arithmetic.
a=160,b=80
Extract the matrix elements a and b.
a+b=\frac{18000}{75}
Consider the second equation. Divide both sides by 75.
a+b=240
Divide 18000 by 75 to get 240.
85a+90b=20800,a+b=240
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
85a+90b=20800,85a+85b=85\times 240
To make 85a and a equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 85.
85a+90b=20800,85a+85b=20400
Simplify.
85a-85a+90b-85b=20800-20400
Subtract 85a+85b=20400 from 85a+90b=20800 by subtracting like terms on each side of the equal sign.
90b-85b=20800-20400
Add 85a to -85a. Terms 85a and -85a cancel out, leaving an equation with only one variable that can be solved.
5b=20800-20400
Add 90b to -85b.
5b=400
Add 20800 to -20400.
b=80
Divide both sides by 5.
a+80=240
Substitute 80 for b in a+b=240. Because the resulting equation contains only one variable, you can solve for a directly.
a=160
Subtract 80 from both sides of the equation.
a=160,b=80
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}