\left\{ \begin{array} { l } { 8 x + 20 y = 11400 } \\ { 10 x + 30 y = 22500 } \end{array} \right.
Solve for x, y
x=-2700
y=1650
Graph
Share
Copied to clipboard
8x+20y=11400,10x+30y=22500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x+20y=11400
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=-20y+11400
Subtract 20y from both sides of the equation.
x=\frac{1}{8}\left(-20y+11400\right)
Divide both sides by 8.
x=-\frac{5}{2}y+1425
Multiply \frac{1}{8} times -20y+11400.
10\left(-\frac{5}{2}y+1425\right)+30y=22500
Substitute -\frac{5y}{2}+1425 for x in the other equation, 10x+30y=22500.
-25y+14250+30y=22500
Multiply 10 times -\frac{5y}{2}+1425.
5y+14250=22500
Add -25y to 30y.
5y=8250
Subtract 14250 from both sides of the equation.
y=1650
Divide both sides by 5.
x=-\frac{5}{2}\times 1650+1425
Substitute 1650 for y in x=-\frac{5}{2}y+1425. Because the resulting equation contains only one variable, you can solve for x directly.
x=-4125+1425
Multiply -\frac{5}{2} times 1650.
x=-2700
Add 1425 to -4125.
x=-2700,y=1650
The system is now solved.
8x+20y=11400,10x+30y=22500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&20\\10&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11400\\22500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&20\\10&30\end{matrix}\right))\left(\begin{matrix}8&20\\10&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&20\\10&30\end{matrix}\right))\left(\begin{matrix}11400\\22500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&20\\10&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&20\\10&30\end{matrix}\right))\left(\begin{matrix}11400\\22500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&20\\10&30\end{matrix}\right))\left(\begin{matrix}11400\\22500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{8\times 30-20\times 10}&-\frac{20}{8\times 30-20\times 10}\\-\frac{10}{8\times 30-20\times 10}&\frac{8}{8\times 30-20\times 10}\end{matrix}\right)\left(\begin{matrix}11400\\22500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-\frac{1}{2}\\-\frac{1}{4}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}11400\\22500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 11400-\frac{1}{2}\times 22500\\-\frac{1}{4}\times 11400+\frac{1}{5}\times 22500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2700\\1650\end{matrix}\right)
Do the arithmetic.
x=-2700,y=1650
Extract the matrix elements x and y.
8x+20y=11400,10x+30y=22500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 8x+10\times 20y=10\times 11400,8\times 10x+8\times 30y=8\times 22500
To make 8x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 8.
80x+200y=114000,80x+240y=180000
Simplify.
80x-80x+200y-240y=114000-180000
Subtract 80x+240y=180000 from 80x+200y=114000 by subtracting like terms on each side of the equal sign.
200y-240y=114000-180000
Add 80x to -80x. Terms 80x and -80x cancel out, leaving an equation with only one variable that can be solved.
-40y=114000-180000
Add 200y to -240y.
-40y=-66000
Add 114000 to -180000.
y=1650
Divide both sides by -40.
10x+30\times 1650=22500
Substitute 1650 for y in 10x+30y=22500. Because the resulting equation contains only one variable, you can solve for x directly.
10x+49500=22500
Multiply 30 times 1650.
10x=-27000
Subtract 49500 from both sides of the equation.
x=-2700
Divide both sides by 10.
x=-2700,y=1650
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}