\left\{ \begin{array} { l } { 8 a + 4 \cdot 5 n + 6 m = 2320 } \\ { a + n + m = 405 } \\ { 2 n = a } \end{array} \right.
Solve for a, n, m
a = -\frac{110}{9} = -12\frac{2}{9} \approx -12.222222222
n = -\frac{55}{9} = -6\frac{1}{9} \approx -6.111111111
m = \frac{1270}{3} = 423\frac{1}{3} \approx 423.333333333
Share
Copied to clipboard
2n=a a+n+m=405 8a+4\times 5n+6m=2320
Reorder the equations.
a=2n
Solve 2n=a for a.
2n+n+m=405 8\times 2n+4\times 5n+6m=2320
Substitute 2n for a in the second and third equation.
n=-\frac{1}{3}m+135 m=\frac{1160}{3}-6n
Solve these equations for n and m respectively.
m=\frac{1160}{3}-6\left(-\frac{1}{3}m+135\right)
Substitute -\frac{1}{3}m+135 for n in the equation m=\frac{1160}{3}-6n.
m=\frac{1270}{3}
Solve m=\frac{1160}{3}-6\left(-\frac{1}{3}m+135\right) for m.
n=-\frac{1}{3}\times \frac{1270}{3}+135
Substitute \frac{1270}{3} for m in the equation n=-\frac{1}{3}m+135.
n=-\frac{55}{9}
Calculate n from n=-\frac{1}{3}\times \frac{1270}{3}+135.
a=2\left(-\frac{55}{9}\right)
Substitute -\frac{55}{9} for n in the equation a=2n.
a=-\frac{110}{9}
Calculate a from a=2\left(-\frac{55}{9}\right).
a=-\frac{110}{9} n=-\frac{55}{9} m=\frac{1270}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}