\left\{ \begin{array} { l } { 6 x + 5 y = 1380 } \\ { 10 x + 7 y = 20600 } \end{array} \right.
Solve for x, y
x = \frac{23335}{2} = 11667\frac{1}{2} = 11667.5
y=-13725
Graph
Share
Copied to clipboard
6x+5y=1380,10x+7y=20600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+5y=1380
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-5y+1380
Subtract 5y from both sides of the equation.
x=\frac{1}{6}\left(-5y+1380\right)
Divide both sides by 6.
x=-\frac{5}{6}y+230
Multiply \frac{1}{6} times -5y+1380.
10\left(-\frac{5}{6}y+230\right)+7y=20600
Substitute -\frac{5y}{6}+230 for x in the other equation, 10x+7y=20600.
-\frac{25}{3}y+2300+7y=20600
Multiply 10 times -\frac{5y}{6}+230.
-\frac{4}{3}y+2300=20600
Add -\frac{25y}{3} to 7y.
-\frac{4}{3}y=18300
Subtract 2300 from both sides of the equation.
y=-13725
Divide both sides of the equation by -\frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{6}\left(-13725\right)+230
Substitute -13725 for y in x=-\frac{5}{6}y+230. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{22875}{2}+230
Multiply -\frac{5}{6} times -13725.
x=\frac{23335}{2}
Add 230 to \frac{22875}{2}.
x=\frac{23335}{2},y=-13725
The system is now solved.
6x+5y=1380,10x+7y=20600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&5\\10&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1380\\20600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&5\\10&7\end{matrix}\right))\left(\begin{matrix}6&5\\10&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\10&7\end{matrix}\right))\left(\begin{matrix}1380\\20600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&5\\10&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\10&7\end{matrix}\right))\left(\begin{matrix}1380\\20600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\10&7\end{matrix}\right))\left(\begin{matrix}1380\\20600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{6\times 7-5\times 10}&-\frac{5}{6\times 7-5\times 10}\\-\frac{10}{6\times 7-5\times 10}&\frac{6}{6\times 7-5\times 10}\end{matrix}\right)\left(\begin{matrix}1380\\20600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{8}&\frac{5}{8}\\\frac{5}{4}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}1380\\20600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{8}\times 1380+\frac{5}{8}\times 20600\\\frac{5}{4}\times 1380-\frac{3}{4}\times 20600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23335}{2}\\-13725\end{matrix}\right)
Do the arithmetic.
x=\frac{23335}{2},y=-13725
Extract the matrix elements x and y.
6x+5y=1380,10x+7y=20600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 6x+10\times 5y=10\times 1380,6\times 10x+6\times 7y=6\times 20600
To make 6x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 6.
60x+50y=13800,60x+42y=123600
Simplify.
60x-60x+50y-42y=13800-123600
Subtract 60x+42y=123600 from 60x+50y=13800 by subtracting like terms on each side of the equal sign.
50y-42y=13800-123600
Add 60x to -60x. Terms 60x and -60x cancel out, leaving an equation with only one variable that can be solved.
8y=13800-123600
Add 50y to -42y.
8y=-109800
Add 13800 to -123600.
y=-13725
Divide both sides by 8.
10x+7\left(-13725\right)=20600
Substitute -13725 for y in 10x+7y=20600. Because the resulting equation contains only one variable, you can solve for x directly.
10x-96075=20600
Multiply 7 times -13725.
10x=116675
Add 96075 to both sides of the equation.
x=\frac{23335}{2}
Divide both sides by 10.
x=\frac{23335}{2},y=-13725
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}