Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x+5y+80=1400,4x+2y+50=1150
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+5y+80=1400
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x+5y=1320
Subtract 80 from both sides of the equation.
6x=-5y+1320
Subtract 5y from both sides of the equation.
x=\frac{1}{6}\left(-5y+1320\right)
Divide both sides by 6.
x=-\frac{5}{6}y+220
Multiply \frac{1}{6} times -5y+1320.
4\left(-\frac{5}{6}y+220\right)+2y+50=1150
Substitute -\frac{5y}{6}+220 for x in the other equation, 4x+2y+50=1150.
-\frac{10}{3}y+880+2y+50=1150
Multiply 4 times -\frac{5y}{6}+220.
-\frac{4}{3}y+880+50=1150
Add -\frac{10y}{3} to 2y.
-\frac{4}{3}y+930=1150
Add 880 to 50.
-\frac{4}{3}y=220
Subtract 930 from both sides of the equation.
y=-165
Divide both sides of the equation by -\frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{6}\left(-165\right)+220
Substitute -165 for y in x=-\frac{5}{6}y+220. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{275}{2}+220
Multiply -\frac{5}{6} times -165.
x=\frac{715}{2}
Add 220 to \frac{275}{2}.
x=\frac{715}{2},y=-165
The system is now solved.
6x+5y+80=1400,4x+2y+50=1150
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&5\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1320\\1100\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&5\\4&2\end{matrix}\right))\left(\begin{matrix}6&5\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\4&2\end{matrix}\right))\left(\begin{matrix}1320\\1100\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&5\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\4&2\end{matrix}\right))\left(\begin{matrix}1320\\1100\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\4&2\end{matrix}\right))\left(\begin{matrix}1320\\1100\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{6\times 2-5\times 4}&-\frac{5}{6\times 2-5\times 4}\\-\frac{4}{6\times 2-5\times 4}&\frac{6}{6\times 2-5\times 4}\end{matrix}\right)\left(\begin{matrix}1320\\1100\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{5}{8}\\\frac{1}{2}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}1320\\1100\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 1320+\frac{5}{8}\times 1100\\\frac{1}{2}\times 1320-\frac{3}{4}\times 1100\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{715}{2}\\-165\end{matrix}\right)
Do the arithmetic.
x=\frac{715}{2},y=-165
Extract the matrix elements x and y.
6x+5y+80=1400,4x+2y+50=1150
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\times 6x+4\times 5y+4\times 80=4\times 1400,6\times 4x+6\times 2y+6\times 50=6\times 1150
To make 6x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 6.
24x+20y+320=5600,24x+12y+300=6900
Simplify.
24x-24x+20y-12y+320-300=5600-6900
Subtract 24x+12y+300=6900 from 24x+20y+320=5600 by subtracting like terms on each side of the equal sign.
20y-12y+320-300=5600-6900
Add 24x to -24x. Terms 24x and -24x cancel out, leaving an equation with only one variable that can be solved.
8y+320-300=5600-6900
Add 20y to -12y.
8y+20=5600-6900
Add 320 to -300.
8y+20=-1300
Add 5600 to -6900.
8y=-1320
Subtract 20 from both sides of the equation.
y=-165
Divide both sides by 8.
4x+2\left(-165\right)+50=1150
Substitute -165 for y in 4x+2y+50=1150. Because the resulting equation contains only one variable, you can solve for x directly.
4x-330+50=1150
Multiply 2 times -165.
4x-280=1150
Add -330 to 50.
4x=1430
Add 280 to both sides of the equation.
x=\frac{715}{2}
Divide both sides by 4.
x=\frac{715}{2},y=-165
The system is now solved.