\left\{ \begin{array} { l } { 6 x + 3 y + 2 z = 12 } \\ { 4 x - y + 4 z = 37 } \\ { 10 x + 5 y + 3 z = 21 } \end{array} \right.
Solve for x, y, z
x = \frac{55}{6} = 9\frac{1}{6} \approx 9.166666667
y = -\frac{37}{3} = -12\frac{1}{3} \approx -12.333333333
z=-3
Share
Copied to clipboard
4x-y+4z=37 6x+3y+2z=12 10x+5y+3z=21
Reorder the equations.
y=4x+4z-37
Solve 4x-y+4z=37 for y.
6x+3\left(4x+4z-37\right)+2z=12 10x+5\left(4x+4z-37\right)+3z=21
Substitute 4x+4z-37 for y in the second and third equation.
x=-\frac{7}{9}z+\frac{41}{6} z=\frac{206}{23}-\frac{30}{23}x
Solve these equations for x and z respectively.
z=\frac{206}{23}-\frac{30}{23}\left(-\frac{7}{9}z+\frac{41}{6}\right)
Substitute -\frac{7}{9}z+\frac{41}{6} for x in the equation z=\frac{206}{23}-\frac{30}{23}x.
z=-3
Solve z=\frac{206}{23}-\frac{30}{23}\left(-\frac{7}{9}z+\frac{41}{6}\right) for z.
x=-\frac{7}{9}\left(-3\right)+\frac{41}{6}
Substitute -3 for z in the equation x=-\frac{7}{9}z+\frac{41}{6}.
x=\frac{55}{6}
Calculate x from x=-\frac{7}{9}\left(-3\right)+\frac{41}{6}.
y=4\times \frac{55}{6}+4\left(-3\right)-37
Substitute \frac{55}{6} for x and -3 for z in the equation y=4x+4z-37.
y=-\frac{37}{3}
Calculate y from y=4\times \frac{55}{6}+4\left(-3\right)-37.
x=\frac{55}{6} y=-\frac{37}{3} z=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}