Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x+2y=130,3x+4y=130
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+2y=130
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-2y+130
Subtract 2y from both sides of the equation.
x=\frac{1}{6}\left(-2y+130\right)
Divide both sides by 6.
x=-\frac{1}{3}y+\frac{65}{3}
Multiply \frac{1}{6} times -2y+130.
3\left(-\frac{1}{3}y+\frac{65}{3}\right)+4y=130
Substitute \frac{-y+65}{3} for x in the other equation, 3x+4y=130.
-y+65+4y=130
Multiply 3 times \frac{-y+65}{3}.
3y+65=130
Add -y to 4y.
3y=65
Subtract 65 from both sides of the equation.
y=\frac{65}{3}
Divide both sides by 3.
x=-\frac{1}{3}\times \frac{65}{3}+\frac{65}{3}
Substitute \frac{65}{3} for y in x=-\frac{1}{3}y+\frac{65}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{65}{9}+\frac{65}{3}
Multiply -\frac{1}{3} times \frac{65}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{130}{9}
Add \frac{65}{3} to -\frac{65}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{130}{9},y=\frac{65}{3}
The system is now solved.
6x+2y=130,3x+4y=130
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}130\\130\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&2\\3&4\end{matrix}\right))\left(\begin{matrix}6&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&4\end{matrix}\right))\left(\begin{matrix}130\\130\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&2\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&4\end{matrix}\right))\left(\begin{matrix}130\\130\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&4\end{matrix}\right))\left(\begin{matrix}130\\130\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{6\times 4-2\times 3}&-\frac{2}{6\times 4-2\times 3}\\-\frac{3}{6\times 4-2\times 3}&\frac{6}{6\times 4-2\times 3}\end{matrix}\right)\left(\begin{matrix}130\\130\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&-\frac{1}{9}\\-\frac{1}{6}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}130\\130\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 130-\frac{1}{9}\times 130\\-\frac{1}{6}\times 130+\frac{1}{3}\times 130\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{130}{9}\\\frac{65}{3}\end{matrix}\right)
Do the arithmetic.
x=\frac{130}{9},y=\frac{65}{3}
Extract the matrix elements x and y.
6x+2y=130,3x+4y=130
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 6x+3\times 2y=3\times 130,6\times 3x+6\times 4y=6\times 130
To make 6x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 6.
18x+6y=390,18x+24y=780
Simplify.
18x-18x+6y-24y=390-780
Subtract 18x+24y=780 from 18x+6y=390 by subtracting like terms on each side of the equal sign.
6y-24y=390-780
Add 18x to -18x. Terms 18x and -18x cancel out, leaving an equation with only one variable that can be solved.
-18y=390-780
Add 6y to -24y.
-18y=-390
Add 390 to -780.
y=\frac{65}{3}
Divide both sides by -18.
3x+4\times \frac{65}{3}=130
Substitute \frac{65}{3} for y in 3x+4y=130. Because the resulting equation contains only one variable, you can solve for x directly.
3x+\frac{260}{3}=130
Multiply 4 times \frac{65}{3}.
3x=\frac{130}{3}
Subtract \frac{260}{3} from both sides of the equation.
x=\frac{130}{9}
Divide both sides by 3.
x=\frac{130}{9},y=\frac{65}{3}
The system is now solved.