Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x+3y=7
Consider the second equation. Add 3y to both sides.
6x+2y=-1,8x+3y=7
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+2y=-1
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-2y-1
Subtract 2y from both sides of the equation.
x=\frac{1}{6}\left(-2y-1\right)
Divide both sides by 6.
x=-\frac{1}{3}y-\frac{1}{6}
Multiply \frac{1}{6} times -2y-1.
8\left(-\frac{1}{3}y-\frac{1}{6}\right)+3y=7
Substitute -\frac{y}{3}-\frac{1}{6} for x in the other equation, 8x+3y=7.
-\frac{8}{3}y-\frac{4}{3}+3y=7
Multiply 8 times -\frac{y}{3}-\frac{1}{6}.
\frac{1}{3}y-\frac{4}{3}=7
Add -\frac{8y}{3} to 3y.
\frac{1}{3}y=\frac{25}{3}
Add \frac{4}{3} to both sides of the equation.
y=25
Multiply both sides by 3.
x=-\frac{1}{3}\times 25-\frac{1}{6}
Substitute 25 for y in x=-\frac{1}{3}y-\frac{1}{6}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{25}{3}-\frac{1}{6}
Multiply -\frac{1}{3} times 25.
x=-\frac{17}{2}
Add -\frac{1}{6} to -\frac{25}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{17}{2},y=25
The system is now solved.
8x+3y=7
Consider the second equation. Add 3y to both sides.
6x+2y=-1,8x+3y=7
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&2\\8&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\7\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&2\\8&3\end{matrix}\right))\left(\begin{matrix}6&2\\8&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\8&3\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&2\\8&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\8&3\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\8&3\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{6\times 3-2\times 8}&-\frac{2}{6\times 3-2\times 8}\\-\frac{8}{6\times 3-2\times 8}&\frac{6}{6\times 3-2\times 8}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-1\\-4&3\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\left(-1\right)-7\\-4\left(-1\right)+3\times 7\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{17}{2}\\25\end{matrix}\right)
Do the arithmetic.
x=-\frac{17}{2},y=25
Extract the matrix elements x and y.
8x+3y=7
Consider the second equation. Add 3y to both sides.
6x+2y=-1,8x+3y=7
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8\times 6x+8\times 2y=8\left(-1\right),6\times 8x+6\times 3y=6\times 7
To make 6x and 8x equal, multiply all terms on each side of the first equation by 8 and all terms on each side of the second by 6.
48x+16y=-8,48x+18y=42
Simplify.
48x-48x+16y-18y=-8-42
Subtract 48x+18y=42 from 48x+16y=-8 by subtracting like terms on each side of the equal sign.
16y-18y=-8-42
Add 48x to -48x. Terms 48x and -48x cancel out, leaving an equation with only one variable that can be solved.
-2y=-8-42
Add 16y to -18y.
-2y=-50
Add -8 to -42.
y=25
Divide both sides by -2.
8x+3\times 25=7
Substitute 25 for y in 8x+3y=7. Because the resulting equation contains only one variable, you can solve for x directly.
8x+75=7
Multiply 3 times 25.
8x=-68
Subtract 75 from both sides of the equation.
x=-\frac{17}{2}
Divide both sides by 8.
x=-\frac{17}{2},y=25
The system is now solved.