Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x-y=1200,-11x+2y=-360
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x-y=1200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=y+1200
Add y to both sides of the equation.
x=\frac{1}{5}\left(y+1200\right)
Divide both sides by 5.
x=\frac{1}{5}y+240
Multiply \frac{1}{5} times y+1200.
-11\left(\frac{1}{5}y+240\right)+2y=-360
Substitute \frac{y}{5}+240 for x in the other equation, -11x+2y=-360.
-\frac{11}{5}y-2640+2y=-360
Multiply -11 times \frac{y}{5}+240.
-\frac{1}{5}y-2640=-360
Add -\frac{11y}{5} to 2y.
-\frac{1}{5}y=2280
Add 2640 to both sides of the equation.
y=-11400
Multiply both sides by -5.
x=\frac{1}{5}\left(-11400\right)+240
Substitute -11400 for y in x=\frac{1}{5}y+240. Because the resulting equation contains only one variable, you can solve for x directly.
x=-2280+240
Multiply \frac{1}{5} times -11400.
x=-2040
Add 240 to -2280.
x=-2040,y=-11400
The system is now solved.
5x-y=1200,-11x+2y=-360
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-1\\-11&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1200\\-360\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-1\\-11&2\end{matrix}\right))\left(\begin{matrix}5&-1\\-11&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-11&2\end{matrix}\right))\left(\begin{matrix}1200\\-360\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-1\\-11&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-11&2\end{matrix}\right))\left(\begin{matrix}1200\\-360\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-11&2\end{matrix}\right))\left(\begin{matrix}1200\\-360\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-\left(-11\right)\right)}&-\frac{-1}{5\times 2-\left(-\left(-11\right)\right)}\\-\frac{-11}{5\times 2-\left(-\left(-11\right)\right)}&\frac{5}{5\times 2-\left(-\left(-11\right)\right)}\end{matrix}\right)\left(\begin{matrix}1200\\-360\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&-1\\-11&-5\end{matrix}\right)\left(\begin{matrix}1200\\-360\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 1200-\left(-360\right)\\-11\times 1200-5\left(-360\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2040\\-11400\end{matrix}\right)
Do the arithmetic.
x=-2040,y=-11400
Extract the matrix elements x and y.
5x-y=1200,-11x+2y=-360
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-11\times 5x-11\left(-1\right)y=-11\times 1200,5\left(-11\right)x+5\times 2y=5\left(-360\right)
To make 5x and -11x equal, multiply all terms on each side of the first equation by -11 and all terms on each side of the second by 5.
-55x+11y=-13200,-55x+10y=-1800
Simplify.
-55x+55x+11y-10y=-13200+1800
Subtract -55x+10y=-1800 from -55x+11y=-13200 by subtracting like terms on each side of the equal sign.
11y-10y=-13200+1800
Add -55x to 55x. Terms -55x and 55x cancel out, leaving an equation with only one variable that can be solved.
y=-13200+1800
Add 11y to -10y.
y=-11400
Add -13200 to 1800.
-11x+2\left(-11400\right)=-360
Substitute -11400 for y in -11x+2y=-360. Because the resulting equation contains only one variable, you can solve for x directly.
-11x-22800=-360
Multiply 2 times -11400.
-11x=22440
Add 22800 to both sides of the equation.
x=-2040
Divide both sides by -11.
x=-2040,y=-11400
The system is now solved.