\left\{ \begin{array} { l } { 5 x - 4 y = 19 y } \\ { 5 x + 2 y = 71 } \end{array} \right.
Solve for x, y
x = \frac{1633}{125} = 13\frac{8}{125} = 13.064
y = \frac{71}{25} = 2\frac{21}{25} = 2.84
Graph
Share
Copied to clipboard
5x-4y-19y=0
Consider the first equation. Subtract 19y from both sides.
5x-23y=0
Combine -4y and -19y to get -23y.
5x-23y=0,5x+2y=71
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x-23y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=23y
Add 23y to both sides of the equation.
x=\frac{1}{5}\times 23y
Divide both sides by 5.
x=\frac{23}{5}y
Multiply \frac{1}{5} times 23y.
5\times \frac{23}{5}y+2y=71
Substitute \frac{23y}{5} for x in the other equation, 5x+2y=71.
23y+2y=71
Multiply 5 times \frac{23y}{5}.
25y=71
Add 23y to 2y.
y=\frac{71}{25}
Divide both sides by 25.
x=\frac{23}{5}\times \frac{71}{25}
Substitute \frac{71}{25} for y in x=\frac{23}{5}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1633}{125}
Multiply \frac{23}{5} times \frac{71}{25} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1633}{125},y=\frac{71}{25}
The system is now solved.
5x-4y-19y=0
Consider the first equation. Subtract 19y from both sides.
5x-23y=0
Combine -4y and -19y to get -23y.
5x-23y=0,5x+2y=71
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-23\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\71\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-23\\5&2\end{matrix}\right))\left(\begin{matrix}5&-23\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-23\\5&2\end{matrix}\right))\left(\begin{matrix}0\\71\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-23\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-23\\5&2\end{matrix}\right))\left(\begin{matrix}0\\71\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-23\\5&2\end{matrix}\right))\left(\begin{matrix}0\\71\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-23\times 5\right)}&-\frac{-23}{5\times 2-\left(-23\times 5\right)}\\-\frac{5}{5\times 2-\left(-23\times 5\right)}&\frac{5}{5\times 2-\left(-23\times 5\right)}\end{matrix}\right)\left(\begin{matrix}0\\71\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{125}&\frac{23}{125}\\-\frac{1}{25}&\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}0\\71\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{125}\times 71\\\frac{1}{25}\times 71\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1633}{125}\\\frac{71}{25}\end{matrix}\right)
Do the arithmetic.
x=\frac{1633}{125},y=\frac{71}{25}
Extract the matrix elements x and y.
5x-4y-19y=0
Consider the first equation. Subtract 19y from both sides.
5x-23y=0
Combine -4y and -19y to get -23y.
5x-23y=0,5x+2y=71
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5x-5x-23y-2y=-71
Subtract 5x+2y=71 from 5x-23y=0 by subtracting like terms on each side of the equal sign.
-23y-2y=-71
Add 5x to -5x. Terms 5x and -5x cancel out, leaving an equation with only one variable that can be solved.
-25y=-71
Add -23y to -2y.
y=\frac{71}{25}
Divide both sides by -25.
5x+2\times \frac{71}{25}=71
Substitute \frac{71}{25} for y in 5x+2y=71. Because the resulting equation contains only one variable, you can solve for x directly.
5x+\frac{142}{25}=71
Multiply 2 times \frac{71}{25}.
5x=\frac{1633}{25}
Subtract \frac{142}{25} from both sides of the equation.
x=\frac{1633}{125}
Divide both sides by 5.
x=\frac{1633}{125},y=\frac{71}{25}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}