\left\{ \begin{array} { l } { 5 x + 3 y + 6 z = 2 } \\ { 6 x + y + 2 z = 0 } \\ { x + 7 y - 3 z = 3 } \end{array} \right.
Solve for x, y, z
x=-\frac{2}{13}\approx -0.153846154
y=\frac{118}{221}\approx 0.533936652
z=\frac{43}{221}\approx 0.194570136
Share
Copied to clipboard
6x+y+2z=0 5x+3y+6z=2 x+7y-3z=3
Reorder the equations.
y=-6x-2z
Solve 6x+y+2z=0 for y.
5x+3\left(-6x-2z\right)+6z=2 x+7\left(-6x-2z\right)-3z=3
Substitute -6x-2z for y in the second and third equation.
x=-\frac{2}{13} z=-\frac{41}{17}x-\frac{3}{17}
Solve these equations for x and z respectively.
z=-\frac{41}{17}\left(-\frac{2}{13}\right)-\frac{3}{17}
Substitute -\frac{2}{13} for x in the equation z=-\frac{41}{17}x-\frac{3}{17}.
z=\frac{43}{221}
Calculate z from z=-\frac{41}{17}\left(-\frac{2}{13}\right)-\frac{3}{17}.
y=-6\left(-\frac{2}{13}\right)-2\times \frac{43}{221}
Substitute -\frac{2}{13} for x and \frac{43}{221} for z in the equation y=-6x-2z.
y=\frac{118}{221}
Calculate y from y=-6\left(-\frac{2}{13}\right)-2\times \frac{43}{221}.
x=-\frac{2}{13} y=\frac{118}{221} z=\frac{43}{221}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}